
Atelier CIDN
Classification Incrémentale et Détection de Nouveauté

Organisateurs :

Pascal CUXAC, Jean-Charles LAMIREL, Vincent LEMAIRE, Thomas GUYET

PRÉFACE

Le développement de méthodes d’analyse dynamique de l’information, comme le clus-
tering incrémental et les méthodes de détection de nouveauté, devient une préoccupa-
tion centrale dans un grand nombre d’applications dont le but principal est de traiter
de larges volumes d’information variant au cours du temps. Ces applications se rap-
portent à des domaines très variés et hautement stratégiques, tels que l’exploration
du Web et la recherche d’information, l’analyse du comportement des utilisateurs et
les systèmes de recommandation, la veille technologique et scientifique, ou encore,
l’analyse de l’information génomique en bioinformatique...

Pour ne prendre en exemple qu’un type d’application sur des données textuelles,
force est de constater que les publications sur des méthodes permettant de détecter
les ruptures technologiques, les thématiques novatrices, sont très présentes dans les
congrès et revues. Cet intérêt est souligné par la mise en place par la Commission
Européenne du programme NEST (New and Emerging Science and Technology) dans
le cadre du FP6 et du programme FET (Future and Emerging Technologies) dans le
FP7.

Lors des deux précédentes conférences EGC, se sont déroulés les premiers ateliers
CIDN. Devant l’intérêt du public pour cette thématique nous organisons la troisième
édition de cet atelier lors de la conférence EGC’13 à Toulouse.

L’objectif de cet atelier, commun EGC-AFIA, est de réunir des chercheurs confir-
més, ainsi que des jeunes chercheurs, autour des problématiques et des applications
de la “classification incrémentale”, et de la “détection de nouveauté” sur des types de
données variées, afin d’échanger nos réflexions sur les travaux en cours ainsi que sur
les points bloquants.

Première instance de rencontre entre les associations Extraction et Gestion des
Connaissances et Association Française pour l’Intelligence Artificielle, cet atelier est
conjointement supporté et organisé par EGC et l’AFIA. Au sein des deux commu-
nautés, les thèmes de l’atelier ont été identifiés comme des thèmes porteurs notamment
pour créer des liens avec les industriels.

P. CUXAC J.C. LAMIREL V. LEMAIRE T. GUYET
INIST-CNRS Synalp-LORIA Orange IRISA

Membres du comité de lecture

Le Comité de Lecture est constitué de:

Alexis Bondu (EDF R&D),
Fabrice Clérot (Orange Labs),
Pascal Cuxac (INIST-CNRS),
Bernard Dousset (IRIT),
Claire François (INIST-CNRS),
Thomas Guyet (IRISA),
Hatem Hamza (Orange),
Pascale Kuntz-Cosperec (Polytech’Nantes),
Jean-Charles Lamirel (Synalp LORIA),
Vincent Lemaire (Orange Labs),
Gaelle Loosli (Polytech’Clermont-Ferrand),
Jean Rohmer (ESILV),
Christophe Salperwyck (Orange Labs),
Fabien Torre (Université Lille 3)

TABLE DES MATIÈRES

Conférence invitée
Similarity Matching in Streaming Time Series
Alice Marascu . 1

Articles sélectionnés
Incremental Novelty Detection applied to Diachronic Scientometrics
Aneesh Sreevallabh Chivukula, Jean-Charles Lamirel 3

Growing Self-organizing Trees for Knowledge Discovery from Data
Nhat-Quang Doan, Hanane Azzag, Mustapha Lebbah 21

Incremental mining of frequent sequences from a window sliding over a stream of
itemsets
Thomas Guyet, René Quiniou . 39

Index des auteurs 57

Similarity Matching in Streaming Time Series

Alice Marascu

IBM Research, Ireland

Nowadays, the installation of a sensor that sends data continuously and at variable rates became a very

easy and affordable task. This allows complex monitoring tasks to be performed and more information

on ongoing processes to be discovered in real time. A multitude of sensor data are surrounding us and

we are more and more interested in choosing the useful data from this large amount of data, and as fast

and as well as possible. Different monitoring algorithms are proposed every year; though, due to the

increasing number of sensors and sensors qualities, better methods are necessary continuously.

Monitoring sensor network, medical devices, transportation sensors or video data are just several

important applications in our days. One important problem is the real time recognition of specific

sequence-patterns in streaming time series. The challenges of this problem and a novel and scalable

solution will be presented.

- 1 -

Incremental Novelty Detection applied to Complex Text
Classification

Aneesh Sreevallabh Chivukula∗, Jean-Charles Lamirel∗∗

∗Center For Data Engineering,
International Institute of Information Technology, Hyderabad, India - 500 032.

aneesh@research.iiit.ac.in,
http://www.iiit.ac.in/

∗∗Equipe SYNALP - LORIA, INRIA Nancy - Grand Est,
Campus scientifique, 615 Rue du Jardin Botanique, Vandoeuvre-les-Nancy, France - 54600.

jean-charles.lamirel@loria.fr
http://www.loria.fr/

Abstract. This paper presents an original approach to summarize the novelty
presented by clustering information in a supervised incremental learning pro-
cess. The approach relies on the novelty detection paradigm to allow binary
discrimination over the information that is similarly labeled in the dataset. Nov-
elty detection filters are used to rank and profile the output of incremental clus-
tering experiments in terms of representative matrices. By discovering normal-
ized features, resulting matrices are able to represent the empirical correlations
within clusters without relying on a complex parameter estimation process. An
incremental classification strategy is shown to implicitly overcome noisy, im-
balanced, highly multidimensional and sparse textual data with high level of
similarity between classes. The experimental evaluation on static data indicates
that the proposed classifier is comparable to standard classifiers with default pa-
rameters. The experimental dataset has 7000 papers related to the classes of a
patents classification scheme in the domain of pharmacology.

1 Introduction
Information filtering is concerned with dynamically adapting the distribution of informa-

tion where both evolving user’s interests and new incoming information are taken into account.
The aim is being able to detect new subjects following the flow of arrival of new data with a
sufficiently good reactivity, which amounts to defining methods which offer an optimal com-
promise between plasticity and stability Prudent and Ennaji (2004). In such context, user’s
information interests need to be defined with the combination elaborate mechanisms of query
completion, sample-based interrogation and topic driven interrogation. Hence, depending both
on the information learned from the flow of user’s decisions and from his original query, user’s
information search can be typified in very various ways such as precise research, exploratory
research, thematic research or connotative research. A wide range of machine learning algo-
rithms and information retrieval techniques have been applied to the filtering task, including

- 3 -

Incremental Novelty Detection applied to Complex Text Classification

Rocchio’s linear classifier, k-nearest neighbours, Bayesian classifiers, neural networks, support
vector machines and boosting T. and Yang (2001), Schapire et al. (1998), Dumais et al. (1998),
(Shankar and George, 2000). However the existing techniques show their limit in the case of
the management of unbalanced and sparse session data Lamirel and Créhange (1994).

Inspired by the systemic theory of communication, the novelty detection method Koho-
nen (1989), (Markou and Singh, 2003) trains a neural network such that the current output of
each neuron is a linear combination of its current input and feedback from past output. Once
training is complete, if a combination of training data is applied to the filter input, the novelty
output will be zero. In filtering context, the novelty detection principle has been applied to
select those documents that are similar to a model learned from examples relevant to user’s
need. By associating several filters to different types of decisions (represented by class labels),
the novelty detection paradigm allows thus to propose a session memory component in the
learningLamirel and Créhange (1994). Compared to traditional relevance feedback Rocchio
(1971), the memory mechanism processes both the relevant and irrelevant user decisions in a
homogeneous way. Moreover, detected novelty is used to control the amount of redundancy
in filtering results according to the type of user’s information need. In this paper we show that
incremental extension of the novelty detection technique proposed for information filtering can
be fruitfully exploited in the framework of the supervised classification of complex and noisy
textual data. For that purpose, the case of multiple class classification is mapped to a series of
one class classification problems that work on skewed datasets. Our input datasets are highly
dimensional, extremely sparse in features, very imbalanced in class labels and contains several
classes of similar profileRaskutti and Kowalczyk (2004).

The reminder of the paper is organized as follows: In Section 2 we present our model.
Section 3 reports our experimental investigations. Our paper concludes in Section 4 followed
by Bibliography.

2 Classification Model
Orthogonalization Operators The novelty filter algorithm Kohonen and Oja (1976) relies
on the properties of orthogonal projection operators. Let there be d distinct Euclidean vectors,
denoted by x1, x2, ..., xd which span a subspace V ⊂ Rn The complement space of V , denoted
by V ⊥, is spanned by all vectors in Rn which are orthogonal to V . Then, using orthogonal
projection operators, any arbitrary vector x ∈ Rn can be uniquely decomposed into the sum
of two vectors x̂ and x̃ such that ||x̃|| = min||ẋ|| ||ẍ|| for all possible x = ẋ + ẍ. Thus,
for X ∈ Rn∗d with xi vectors as its columns and X+ as the pseudo-inverse, we derive the
orthogonal matrix projection operator XX+ such that:

x̃ = XX+x (1)

and
x̂ = (I −XX+)x (2)

where I is the identity matrix. Therefore, the component x̃ can be regarded as the residual
contribution in x that is left when x is input to a novelty detection filter (NDF) with state
matrix XX+. The matrix XX+ is also called the transfer function of NDF model.

- 4 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

Learning Rule The NDF model is implemented with a recurrent network of neuron like
adaptive elements with internal connections such that every element of the output x̃i is assumed
to receive a feedback from the other elements x̃j through connection weights mij . Thus, the
network output signals x̃i are assumed to be linear combinations of the input signals xi and
the feedback signals as:

x̃i = xi + Σjmij x̃j (3)

or in matrix notation as
x̃ = x + Mx̃ (4)

The weights of the feedback connections mij associated with the feedback connections char-
acterize the variable internal state of the network. They are initialized to zero and then updated
during the training phase. The updates are applied according to the anti-Hebbian learning rule:

dM

dt
= −αx̃x̃T (5)

where α is a small positive parameter that is adaptively modified during the training phase.
The feedback weights are iteratively trained to suppress redundant input features by decorre-
lating strongly correlated output neurons. The decorrelation ensures the detection of data that
significantly deviates from the training data.
The above module can now be expressed in terms of the differential equation for Φ ∈ Rd∗d as
follows:

x̃ = x + Mx̃ = (I −M)−1x = Φx (6a)
dM

dt
= −αx̃x̃T (6b)

The differential equation for Φ is a Bernoulli equation solved with the Greville’s theorem to
give a recursive expression to estimate the transfer function of the NDF as follows:

Φk = Φk−1 −
x̃kx̃T

k

||x̃k||2
(7)

By introducing the identity matrix in the update rule, for considering separately all the training
samples and features in the input dataset, we get the final update rule for ILoNDF as:

Φk = I + Φk−1 −
x̃kx̃T

k

||x̃k||2
(8)

where

x̃k = (I + Φk−1)xk (9a)
Φ0 = [0]d∗d (9b)

The matrices Φk and Φk−1 have same eigenvectors with eigenvalues differing by 1 Kassab
and Lamirel (2007). Introducing the identity matrix transforms the eigenvectors into a se-
quence of positive-definite matrices I + Φk−1. As a result, the orthogonality conditions are
no longer satisfied between the space spanned by the filter and that of the reference data. The
dimensionality of the space spanned by the model continues to be of the same order as the
original description space.

- 5 -

Incremental Novelty Detection applied to Complex Text Classification

Training The basic idea of novelty detectionKohonen (1989),Markou and Singh (2003) is
to learn a new model of the domain dataset being monitored and then to automatically detect
novel data that deviates from the normal model. NDF can operate in an online mode without
repeated parametric training. However NDF requires that the input data be noise free. Further
NDF cannot model high dimensional data that changes over time. Unlike NDF, Incremental
data-driven Learning of Novelty Detector Filter (ILoNDF) Kassab and Lamirel (2007) update
rule ensures gradual discarding of knowledge regarding old data while considering all features
of input throughout training phase. Training ILoNDF on a relevant(or positive) dataset leads
to development of the transfer function of the filter under a matrix representation called state
matrix or correlation matrix. We can interpret the state matrix of ILoNDF filter as representing
the occurrence frequency of each of the features and their relationships in the training data. If
a new example is then presented as input, a vector will appear at the output which represents
the new features extracted from the input. Compared to classical NDF that exhibits absolute
learning problem by being biased towards first available positive class label in dataset, ILoNDF
learns features shared between positive and negative classes. Assuming the number of samples
in minority classes is sufficient to complete filter training, filter transfer functions are used
to build the clustering profiles. These profiles are used to perform multifold stratified cross
validation on datasets having both positive and negative class labels. Filters trained on negative
labels are not used in ranking, thresholding class or cluster profiles. Figure 1, 2, 3 give the
pseudocode for training phase of the classifier.

FIG. 1 – Partitioning

Profiling For the binary discrimination problem we generate two ranking proportions based
on scalar and vector projections of the input sample features on the filter transfer function. The
principle of ILoNDF to capture correlations in the features of training input is used to form the
ranks.

- 6 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

FIG. 2 – Normalization

– The Direct-Projection Method (DPM) : The ’novelty proportion’ quantifies novelty in
current input with respect to the data learnt during training. It is defined as:

Nxi
=
||x̃i||
n ||xi||

(10)

where n is number of positive training data.
The ’habituation proportion’ quantifies the similarity(or redundancy) of the positive test
sample with the positive data of previously learnt train samples as:

Hxi
= 1−Nxi

= 1− ||x̃i||
n ||xi||

(11)

The habituation proportion is considered a classifications score of the data xi indicating
the likelihood that the example belongs to the positive class.

– The Vector-Based Projection Method (V-PM) : For high dimensional dataset, we define
a lower dimensional profile vector to represent the train dataset in place of the transfer
function. Then, the novelty in each feature of the current input sample is characterized

- 7 -

Incremental Novelty Detection applied to Complex Text Classification

FIG. 3 – Training

by projecting onto the profile vector. To find the profile vector, unit vector representing
presence of each feature in dataset is cumulatively projected onto the filter space that is
orthogonal to original data space. In a given novelty detector, the periodic variations in
the diagonal of state matrix represents train dataset dimensions learnt. In an ultra sparse
input sample set, dimensions that are never learnt lead to instability in the filter because
normalization does not affect the non-diagonal elements in ILoNDF update rule. In case
ILoNDF normalization is not specific enough to capture rare information in dataset,
we may use NDF update rule in place of ILoNDF update rule. Therefore to further
improve performance of ILoNDF update rule, we propose that the projection of both
input magnitude and phase on filter is to be considered in normalization computation
of both scalar and vector ranking metrics. Here we assume that projection is a better
normalization operation than classical cosine similarity to capture correlations in the
input dataset. The updated V-PM is defined as:

Vxi
=

x̃iPv

||xi|| ||Pv||
, (12a)

Pv = Σf∈FHfuf , (12b)

Hf = 1− Φuf
nuf

(12c)

(12d)

- 8 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

where uf is the unit vector associated with the direction of a feature f in the description
space.

– Weighting : DPM is a precise proportion that matches the similarity of current sample to
the sample that the filter learnt in the past. Whereas the V-PM is a diversity proportion
that measures the similarity of current input feature values with respect to the feature
information the filter acquired in the past. In general habituation space is a combination
and rotation of original description space. To form a proper pattern matching proportion
we require a habituation proportion that is a linear combination of both DPM and V-PM
proportions. Projection similarity is used to form the V-PM proportions of sparse sam-
ples. The DPM scalar ranking is determined by the habituation proportion that measures
the input sample component that remains after the novelty in said sample is learnt. The
weighted combination of the classification ranks defines a global score calculated as :

CS(xi) = (1− λ)Hxi
+ λVxi

, (13a)

λ =
standarddeviationofPv

maxvalue−minvalueofthePvcomponents
(13b)

λ is based on the variations in Pv across features because we can view the variance of vector
components as indicative of usefulness in forming classification ranks. Figure 4 and Algo-
rithm 1 give the pseudocode for profiling phase of the classifier.

Testing Each test sample input to a novelty detection filter is projected into a search space
that is orthogonal to the original description space. When applying ILoNDF to test data of
the positive class, a classification score indicating the likelihood that the example is similar
to the positive class is computed. ILoNDF decision thresholding process tends to perform
well on datasets with more linear than non linear features. The performance of the ILoNDF
is quite effective in the case of single-label datasets where each document belongs exactly
to one category. However, it fails in the multi-label case where a document may be belong
to more than one category. The latter case is relatively more difficult to process for all the
existing novelty detection approaches, since high correlation between relevant and irrelevant
documents is strongly probable. Algorithm 2 gives the pseudocode for testing phase of the
classifier.

Evaluation The Equation 9 is used to find the profile vector for a given input train fold
dataset. Without the need for repeated parameter tuning, ILoNDF is robust in dealing with
high-dimensional noisy data that is investigated in our experiments. The characteristic vector
of a filter’s correlation matrix is used in profiling the class labels. Since ILoNDF trains on
samples with the positive label, we check the rate of acceptance of positive samples and rate of
rejection of negative samples during testing for each positive label. The cumulative accuracy
of the classification scheme is then the summation of accuracies obtained for each positive
label. The time complexity of the iterative algorithm depends on number of dimensions and
samples in the training set. Being based in novelty detection filters, the proposed classifier
is less sensitive to outliers. Algorithm 3 gives the pseudocode for evaluation phase of the
classifier.

- 9 -

Incremental Novelty Detection applied to Complex Text Classification

Algorithm 1 Dissemination Threshold value set for each positive class label in a given train
fold
Input:
X = {x1, x2, ..., xn} : Labelled train dataset in Compressed Sparse Row sparse memory
format for a given fold;
C = {c1, c2, ..., cm} : Nominal class label set for train dataset;
Pvci for i = {1, 2, ...,m} : Representative profile vector in Compressed Sparse Row sparse
memory format for each state matrix of novelty detector corresponding to positive label for
each of the class labels in a given train fold;
λci for i = {1, 2, ...,m} : Ranking weight for each profile vector representing a positive
class label.

Output:
thresholdci for i = {1, 2, ...,m} : Ranking threshold value for each state matrix represent-
ing a positive class label in a given train fold..

Partition train sample setX according to class labelsC asXC = {Xci} for i = {1, 2, ...,m}
for c ∈ C do

Begin
cindex← index of c ∈ C
Hc ← [0]|Xc|×|C|
Pc ← [0]|Xc|×|C|
CSc ← [0]|Xc|×|C|
for all x ∈ Xc do

Begin
xindex← index of x ∈ Xc

x̃← (I + Φc)x

Hc[xindex, cindex]← 1− ||x̃||
|Xc|×||x||

Pc[xindex, cindex]← x̃Pvci

||x||||Pvci ||
CSc[xindex, cindex]←
(1− λci)Hc[xindex, cindex]
+(λci)Pc[xindex, cindex]

End
thresholdci ← 〈CSc[:, cindex]〉

End
return thresholdci for i = {1, 2, ...,m}

- 10 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

Algorithm 2 Incremental novelty detector testing on positive and negative samples for each of
the class labels in a given test fold : Initialization
Input:
X = {x1, x2, ..., xn} : Labelled test dataset in Compressed Sparse Row sparse memory
format for a given fold;
C = {c1, c2, ..., cm} : Nominal class label set for test dataset;
Φci for i = {1, 2, ...,m} : Positive filter transfer function in Compressed Sparse Row sparse
memory format for each of the class labels in a train fold associated with the test dataset.
Pvci for i = {1, 2, ...,m} : Representative profile vector in Compressed Sparse Row sparse
memory format for each state matrix of novelty detector corresponding to positive label for
each of the class labels in a train fold associated with the test dataset;
λci for i = {1, 2, ...,m} : Ranking weight for each profile vector representing a positive
class label for each of the class labels in a train fold associated with the test dataset;
thresholdci for i = {1, 2, ...,m} : Ranking threshold value for each state matrix represent-
ing a positive class label in a train fold associated with the test dataset.

Output:
Accuracy : Figure of merit for classification performance computed on test data projected
against transfer functions and representative profiles formed on the train data.

Partition test sample set X according to class labels C as XC = {Xci} for i = {1, 2, ...,m}
TruePositives← 0
TrueNegatives← 0
TPS ← 0
TNS ← 0
FoldAccuracy ← 0
for c ∈ C do

Begin
cindex← index of c ∈ C
PS ← Xc

NS ← XC −Xc

HPSc ← [0]|Xc|×|C|
PPSc ← [0]|Xc|×|C|
CSPSc ← [0]|Xc|×|C|
HNSc ← [0]|XC−Xc|×|C|
PNSc ← [0]|XC−Xc|×|C|
CSNSc ← [0]|XC−Xc|×|C|

End

- 11 -

Incremental Novelty Detection applied to Complex Text Classification

Algorithm 3 Incremental novelty detector testing on positive and negative samples for each of
the class labels in a given test fold : Accuracy

for c ∈ C do
Begin

for all x ∈ Xc do
Begin

xindex← index of x ∈ Xc

x̃← (I + Φc)x

HPSc[xindex, cindex]← 1− ||x̃||
|Xc|×||x||

PPSc[xindex, cindex]← x̃Pvci

||x||||Pvci ||
CSPSc[xindex, cindex]←
(1− λci)HPSc[xindex, cindex]
+(λci)PPSc[xindex, cindex]

If CSPSc[xindex, cindex]
≥ thresholdci
for i = {1, 2, ...,m} then

Begin
TruePositives←
TruePositives+ 1

End
End
TPS = TPS + |Xc|
TNS = TNS + |XC −Xc|

for all x ∈ XC −Xc do
Begin

xindex← index of x ∈ Xc

x̃← (I + Φc)x
HNSc[xindex, cindex]

← 1− ||x̃||
|XC−Xc|×||x||

PNSc[xindex, cindex]← x̃Pvci

||x||||Pvci ||
CSNSc[xindex, cindex]←
(1− λci)HNSc[xindex, cindex]
+(λci)PNSc[xindex, cindex]

If CSNSc[xindex, cindex]
≤ thresholdci
for i = {1, 2, ...,m} then

Begin
TrueNegatives←
TrueNegatives+ 1

End
End

End
FoldAccuracy ← TruePositives+TrueNegatives

TPS+TNS
return FoldAccuracy

- 12 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

FIG. 4 – Profiling

3 Experiments
In this section, we describe our experiments for testing the performance of the novelty

detector filter in text filtering environment. Our experiments are performed on a dataset of
bibliographical records related to a reference dataset of patents in the domain of pharmacology
issued from the QUAREO project. 1

3.1 Data Source
The data is a collection of patent documents related to pharmacology domain. The

bibliographic citations in the patents are extracted from the Medline database 2. The source
data contains 6387 patents in XML format, grouped into 15 subclasses of the A61K class

1. http://www.quaero.org
2. http://www.ncbi.nlm.nih.gov/pubmed/

- 13 -

Incremental Novelty Detection applied to Complex Text Classification

(medical preparation). 25887 citations have been extracted from 6387 patents. Hajlaoui et al.
(2012). Then the Medline database is queried with extracted citations for related scientific
articles. The querying gives 7501 articles with 90% recall. Each article is then labeled by
the class code of the citing patent. The set of labeled articles represents the final document
set on which the training is performed. The final document set is unbalanced, with smallest
class containing 22 articles (A61K41 class) and largest class containing 2500 articles (A61K31
class). Inter class similarity computed using cosine correlation indicates that more than 70%
of classes’ couples have a similarity between 0.5 and 0.9. Thus the ability of any classifica-
tion model to precisely detect the right class is curtailed. A common solution to deal with
unbalance in dataset is undersampling majority classes and oversampling minority classes.
However sampling that introduces redundancy in dataset does not improve the performance
of novelty detection training process. Instead, we recommend ensemble creation approaches
such as boosting and bagging based on principles of data resampling and reestimation. Such
techniques give low standard deviation between unbalanced and overlapping class labels. In
this context, the training data weighting is an attempt to reach an optimal set of classesPrudent
and Ennaji (2005) over cluster partitioning in unsupervised learning and feature sampling in
search space. 3. Here, by definition uniform stratification on either balanced or unbalanced
dataset affects the feature correlation metrics than the class probability estimation process. So
that bootstrapping of train and test data may solve problems of filtering sensibility, stability,
scalability, dimensionality etc but does not improve accuracy computation over the sampled
correlations. To reduce program execution time, we recommend the pruning of irrelevant fea-
tures by thresholding and ranking the term frequencies.

3.2 Data Representation
– The document set is converted to a bag of words modelSalton (1971) using the TreeTag-

ger tool Schmid (1994) developed by the Institute for Computational Linguistics of the
University of Stuttgart. This tool is both a lemmatizer and a tagger. A lemmatizer asso-
ciates a lemma, or a syntactic root, to each word in the text and a tagger automatically
annotates text with morpho-syntactic information. In our case, the documents are firstly
lemmatized and the tagging process is performed on lemmatized items (in the case when
a word is unknown to the lemmatizer, its original form is conserved). The punctuation
signs and the numbers identified by the tagger are deleted. The feature selection ac-
cording to grammatical categories allows identifying salient features for the documents
classification according to document types or opinions.

– Every document is represented as a term vector filled with keyword frequencies. The
description space has dimensionality 30000. The thresholded description space has
11471. The whole text collection is then represented as a (N+1)J matrix where J is
number of articles in the collection in a N-dimensional space. Each line j of this matrix
is an N-dimensional bag of words vector for article j, plus its class label. The Term
Frequency-Inverse Document Frequency(TFIDF) weighting scheme Salton and Buck-
ley (1988) gives a sparse matrix representation of the text collection. The representation
matrix is stored in arff format 4. Although we use the sparse matrix representation in our

3. http://weka.sourceforge.net/doc.dev/weka/filters/supervised/attribute/
AttributeSelection.html

4. http://weka.wikispaces.com/ARFF

- 14 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

experiments, we observe that the computational overhead of using a dense matrix rep-
resentation such as Augmented normalized frequency (ANTF) weighting scheme is not
useful. We require relevant terms in the text collection such that the mean and standard
deviation of term frequencies varies from minimum and maximum values in document
set. By flattening the term counts, the current version of ANTF formatted input reduces
variance in term frequencies between balanced and unbalanced class labels across doc-
ument set. However the ANTF dataset is not more linearly separable as compared to
TFIDF formatted input dataset.

– The data is stored on disk in sparse arff format. Due to high dimensionality, external
libraries cannot be used in place of regular expressions and string manipulation to load
the dataset. An input record is loaded into memory in sparse matrix format. Dictio-
nary Of Keys memory format is used to initialize sparse matrices. Each input record is
converted to Compressed Sparse Row format for every subsequent matrix multiplication
operation. The intermediate files after training, profiling, thresholding, testing processes
are stored on disk with Cpickle ’old binary format’ as protocol for disk io. Instead of
a database server process handling disk io, if Cpickle cannot handle the sparse dataset
scale, we propose the usage of HDF5,pytables library 5, 6. During cross validation, large
and small size train and test datasets are stored in batch and incremental mode. To check
memory profiling, we also propose the usage of specialized sparse libraries (such as pys-
parse, sage, petsc4py instead of standard scipy) for storing and loading sparse matrices.

3.3 Feature selection

In order to compare the results issued from our incremental learning approach which op-
timized classification results, we exploit an original feature selection process based on feature
maximization. Although such an optimization would not be realistic in incremental condition,
it provides useful information on the influence of noise on the learning of different methods

Feature maximization is a quality metric which favours features with maximum feature F-
measure Lamirel (2011). Feature F-measure (FF) is the harmonic mean of feature recall (FR)
and feature precision (FP) which in turn are defined as 7

FRc(f) =

∑
v∈c

W f
v

∑
c′∈C

∑
v∈c′

W f
v

, FPc(f) =

∑
v∈c

W f
v

∑
f ′∈Fc,v∈c

W f ′
v

where W f
x represents the weight of the feature f for element x (1 or 0 in the case of our

application) and Fc designates the set of features associated with the data associated to class c.

5. http://www.hdfgroup.org/HDF5/
6. http://www.pytables.org/
7. Since feature recall is equivalent to the conditional probability P (c|p) and feature precision is equivalent to the

conditional probability P (p|c), this former strategy can be classified as an expectation maximization approach with
respect to the original definition given by Dempster and al. Dempster et al. (1977)

- 15 -

Incremental Novelty Detection applied to Complex Text Classification

A feature is then said to be relevant for a given class iff its feature F-measure is higher for that
class than the average feature F-measure FFm computed for all the classes

FFm =

∑
c∈C

FFc(f)

|C| (14)

All the relevant features of the classes are merged to form the pruned description space.
This process resulted in reducing the size of the description space from 11471 variables to 330.
Our new feature selection technique is finally compared to information gain in our experiment.

3.4 Results

Accuracy
ILoNDF Rochio J48 RandomForest AdaBoostM1 DMNBtext SMO
0.59 0.53 0.41 0.43 0.39 0.56 0.57

TAB. 1 – Comparing linear accuracies on thresholded dataset

Accuracy
ILoNDF Rochio J48 RandomForest AdaBoostM1 DMNBtext SMO
0.63 0.55 0.73 0.71 0.35 0.79 0.64

TAB. 2 – Comparing linear accuracies on pruned dataset (feature maximization)

Accuracy
ILoNDF Rochio J48 RandomForest AdaBoostM1 DMNBtext SMO
0.61 0.53 0.48 0.49 0.38 0.58 0.59

TAB. 3 – Comparing linear accuracies on pruned dataset (information gain)

– We compare the accuracy given in Table 1, 2, 3 of our algorithm with the following
algorithms. Default parameters, listed in Table 4, are used when executing weka algo-
rithms.
– Classical Rochio’s supervised k-medoids algorithm on sparse data Rocchio (1971)
– Weka’s Decision Tree algorithm weka.classifiers.trees.J48 Quinlan (1993)
– Weka’s Random Forest algorithm weka.classifiers.trees.RandomForest Breiman (2001)
– Weka’s Boosting algorithm weka.classifiers.meta.AdaBoostM1 Freund and Schapire

(1996)

- 16 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

Parameters for Weka Algorithms
weka.classifiers.trees.J48 -C 0.25 -M 2
weka.classifiers.trees.RandomForest -I 10 -K 0 -S 1 -num-slots 1
weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10 -W

weka.classifiers.trees.DecisionStump
weka.classifiers.bayes.DMNBtext -I 1 -B false
weka.classifiers.functions.SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V

-1 -W 1 -K PolyKernel -C 250007 -
E 1.0"

TAB. 4 – Weka Algorithms and Default Parameters

– Weka’s Bayesian Network algorithm weka.classifiers.bayes.DMNBtext Su et al. (2008)
– Weka’s Support Vector Machine algorithm weka.classifiers.functions.SMO Schoelkopf

et al. (1998), Keerthi et al. (2001)
– We observe the following from results :

– ILoNDF provides the best performance on initial thresholded dataset, in which a high
level of noise can be observed.

– In a given execution trial, accuracy values vary according to stratification, number
of samples in each class. Profiling, ranking normalization in ILoNDF is affected by
imbalance in dataset for minority class labels.

– Information gain is quite inefficient for feature selection in the context of our dataset.
– Feature maximization provides conversely very significant performance enhancement

for most methods.
– In addition to learning linear correlations, NDF acts as a regularization operation re-

ducing variance across features and subspaces.
– Rochio has best performance with L1 norm, indicating linear correlations are learnt.

ILoNDF outperforms Rochio in pruned dataset using feature maximization principle.
This result indicates that the feature selection process based on feature maximization
has overcome nonlinearities across features in preliminary experiments.

– Decision tree (J48) has performance comparable to RandomForest in initial thresh-
olded dataset, indicating need for further feature selection.

– Bayesian belief network, DMNBText, has most accuracy and least variance on pruned
dataset using feature maximization, indicating stability across stratification. Boost-
ing(AdaBoost) has lowest accuracy. We conclude that, a combination of bayesian
techniques like the ones provided by a Bayesian belief network and Bayesian based
feature selection technique is comparable to updated ILoNDF for learning nonlinear
correlations.

– The computed accuracy of incremental NDF has variable confidence level of 5-10%.
TrueNegatives are dominating TruePositives in each fold indicating nonlinearity and
label skew in dataset. Therefore, we do not attempt arbitrary comparison of the dis-
semination thresholds formed in orthogonal search spaces during accuracy evaluation.

- 17 -

Incremental Novelty Detection applied to Complex Text Classification

4 Conclusion

In this paper we show that incremental extension of the novelty detection technique pro-
posed for information filtering can be fruitfully exploited in the framework of the supervised
classification of highly multidimensional, ultra sparse and noisy textual data, with high simi-
larity between classes. We have especially shown that this method can outperform state of the
art incremental techniques when noise and class imbalance are an inherent factor of the input
flow, and thus must be considered as working constraints of the classification problem.

In theory, novelty detector learning method is an incremental parameter free method that
has the ability of generative learning by integrating information relating to the relative fre-
quencies and co-occurrence dependencies of the features that are stable in training data. Thus
ILoNDF injects novelty into classification based on information in class labels. However, in
sparse dataset, the accuracy variation which is observed may be studied by checking for the
variation in diagonal of the novelty detectors that learn from a pruned featureset.

The performance enhancement we obtained with the use of variable selection based on
feature maximization leads us also to think that the approach can thus be fruitfully combined
with incremental clustering technique based on same kind of metric, like the IGNGF cluster-
ing method Lamirel (2011). The class profiles can thus be adaptively aggregated by defining
cascading, voting and weighting experiments on filter profiles while constructing clusters from
input samples. Hence, the use of the correlation matrices and discriminatory functions asso-
ciated to cluster overlap, extension and generalization, one class novelty detection of ILoNDF
can be integrated with multiclass clustering to give a ensemble classification method Duin
(2002), Kuncheva (2002), Serpico et al. (1996), Giacintoa et al. (2000).

Further, we may define the loss functions and performance metrics based on relevancy
feedback for smoothing the nonlinearities encountered when training the filters. We believe
that such a statistical smoothing will also reduces the class imbalance in the dataset.

Finally, to build up novelty detectors over subspaces, we can also investigate the usage
of random subspacing principle in the classification processDeerwester et al. (1990), Boley
(1998), Zhao et al. (2011).

References

Boley, D. L. (1998). Principal direction divisive partitioning. Data Mining and Knowledge
Discovery 2(4), 325–344.

Breiman, L. (October 2001). Random forests. Machine Learning 45(1), 5–32.
Deerwester, S., S. T. Dumais, G. W. Furnas, T. Landauer, and R. Harshman (1990). Indexing

by latent semantic analysis. Journal of the American Society for Information Science 41,
391–407.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood for incomplete
data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39(1), 1–38.

Duin, R. (2002). The combining classifier: to train or not to train? Proceedings. 16th Interna-
tional Conference on Pattern Recognition 2, 765–770.

- 18 -

Aneesh Sreevallabh Chivukula and Jean-Charles Lamirel

Dumais, S., J. Platt, D. Heckerman, and M. Sahami (1998). Inductive learning algorithms and
representations for text categorization. Proceedings of the Seventh International Conference
on Information and Knowledge Management CIKM, 148–155.

Freund, Y. and R. Schapire (1996). Experiments with a new boosting algorithm. Proc Inter-
national Conference on Machine Learning, 148–156.

Giacintoa, G., F. Rolia, and F. Bruzzoneb (May 2000). Combination of neural and statisti-
cal algorithms for supervised classification of remote-sensing images. Pattern Recognition
Letters 21, Issue 5, 385–397.

Hajlaoui, K., P. Cuxac, J. Lamirel, and C. Francois (2012). Enhancing patent expertise through
automatic matching with scientific papers. Discovery Science, Lecture Notes in Computer
Science 7569, 299–312.

Kassab, R. and J. Lamirel (2007). Towards a synthetic analysis of user’s information need for
more effective personalized filtering services. Proceedings of the 2007 ACM symposium on
Applied computing, 852–859.

Keerthi, S., S. Shevade, C. Bhattacharyya, and K. Murthy (2001). Improvements to platt’s smo
algorithm for svm classifier design. Neural Computation 13(3), 637–649.

Kohonen, T. (1989). Self organisation and associative memory (3 ed.). New York: Springer.
Kohonen, T. and E. Oja (Jan 1976). Fast adaptive formation of orthogonalizing filters and

associative memory in recurrent networks of neuron-like elements. Biol Cybern. 8;21(2),
85–95.

Kuncheva, L. (Feb 2002). A theoretical study on six classifier fusion strategies. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24, Issue: 2, 281–286.

Lamirel, J. (January 21, 2011). A new multi-viewpoint and multi-level clustering paradigm
for efficient data mining tasks. New Fundamental Technologies in Data Mining", Edited by
Kimito Funatsu.

Lamirel, J.-C. and M. Créhange (1994). Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM’94).

Markou, M. and S. Singh (2003). Novelty detection: a review|part 2: neural network based
approaches. Signal Processing journal 83, 2499–2521.

Prudent, Y. and A. Ennaji (2004). Clustering incremental pour un apprentissage distribue -
vers un systeme evolutif et robuste. CAP04, Montpellier.

Prudent, Y. and A. Ennaji (August 2005). A k nearest classifier design. Engineering of Intel-
ligent Systems, Electronic Letters on Computer Vision and Image Analysis, Editors: Jean-
Marc Ogier, Thierry Paquet, Gemma Sanchez, Special issue on Document Analysis 5(2).

Quinlan, R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kauf-
mann.

Raskutti, B. and A. Kowalczyk (2004). Extreme re-balancing for svms: a case study. SIGKDD
Explor. Newsl. 6(1), 60–69.

Rocchio, J. (1971). Relevance feedback in information retrieval In The SMART Retrieval
System: Experiments in Automatic Document Processing. Englewood NewJersey: Prentice
Hall Inc.

- 19 -

Incremental Novelty Detection applied to Complex Text Classification

Salton, G. (1971). Automatic processing of foreign language documents. Prentice-Hill: Engle-
wood, Cliffs, NJ.

Salton, G. and C. Buckley (1988). Term weighting approaches in automatic text retrieval.
Information Processing and Management 24(5), 513–523.

Schapire, R., Y. Singer, and A. Singhal (1998). Boosting and rocchio applied to text filtering.
Proceedings of the Twenty first Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 215–223.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. Proceedings of
International Conference on New Methods in Language Processing.

Schoelkopf, B., C. Burges, and A. S. editors (1998). Advances in Kernel Methods - Support
Vector Learning. MIT Press.

Serpico, S., L. Bruzzonea, and F. Rolib (25 November 1996). An experimental comparison
of neural and statistical non-parametric algorithms for supervised classification of remote-
sensing images. Pattern Recognition Letters, Special Issue on Non-conventional Pattern
Analysis in Remote Sensing 17, Issue 13, 1331–1341.

Shankar, S. and K. George (2000). Weight adjustment schemes for a centroid based classier.
Technical report, Department of Computer Science, University of Minnesota, Minneapolis,
Minnesota,. Computer Science Technical Report (TR00-035).

Su, J., H. Zhang, C. Ling, and S. Matwin (2008). Discriminative parameter learning for
bayesian networks. ICML.

T., A. and Y. Yang (2001). knn, rocchio and metrics for information filtering. The Tenth Text
REtrieval Conference (TREC 10).

Zhao, Z., L. Wang, H. Liu, and J. Ye (2011). On similarity preserving feature selection. IEEE
Transactions on Knowledge and Data Engineering.

Résumé
Cet article présente une approche originale pour synthétiser à la fois les caractéristiques

de classes et la nouveauté à partir du même processus d’ap-prentissage incrémental supervisé.
L’approche repose sur le paradigme de détection de nouveauté qui permet d’opérer une dis-
crimination binaire des informations caractérisées par la même étiquette dans les données. Ce
paradigme permet d’obtenir des profils de classes induits par des matrices de projection. Les
matrices de projection, obtenues de manière incrémentale sont en mesure de caractériser les
corrélations linéaires entre les variables représentatives des classes, sans nécessiter de proces-
sus complexe d’estimation de paramètres. Les premières études que nous menons dans ce pa-
pier montre que même dans le cas de données statiques la méthode incrémentale proposée peut
surpasser les méthodes de référence, pour la classification de données déséquilibrées, bruitées,
fortement multidimensionnelles et éparses avec un fort degré de similitude entre les classes.
L’ensemble de données expérimentales est un ensemble de 7000 publications rattachées à des
classes de brevets issues d’une classification de référence en pharmacologie.

- 20 -

Growing Self-organizing Trees for Knowledge Discovery
from Data

Nhat-Quang Doan∗, Hanane Azzag∗, Mustapha Lebbah ∗

∗ Université Paris 13, LIPN UMR 7030
99, avenue Jean-Baptiste Clément

93430 Villetaneuse, France
nhat-quang.doan, hanane.azzag, lebbah@lipn.univ-paris13.fr

Résumé. In this paper, we propose a new unsupervised learning method based
on growing neural gas and using self-assembly rules to build hierarchical struc-
tures. Our method named Growing Self-organizing Trees (GSoT) depicts data
in topological and hierarchical organization. This makes GSoT a good tool for
data clustering and knowledge discovery. Experiments conducted on real data
sets demonstrate the good performance of GSoT.

1 Introduction
Discovering the inherent structure and its uses in large data has become one of the major

challenges in data mining applications. An attractive way to assist the analysts in data explora-
tion is to base on unsupervised approaches allowing clustering and mapping high-dimensional
data in a small number of dimensions. The self-organizing map (SOM) can be used as a cluste-
ring method that addresses these issues. A variety of self-organizing models are derived from
the first original model proposed by Kohonen [1]. All models are different from each other, but
share the same idea : depict data set on a fixed and simple geometric relationship projected on
a reduced and fixed topology (1D or 2D). Other variants such as Growing Neural Gas (GNG)
by Fritzke [2] and growing hierarchical self-organizing map [3] allow to overcome sensitivity
to topology by dynamically growing the grid or the network. Generally, growing algorithm
is widely used for learning topological preservation, clustering, vector quantization and quick
indexation of data [4, 5].

Hierarchical structures are often used to illustrate the arrangement of data. A hierarchical
tree is an efficient and optimal representation facilitating cluster analysis. The identification of
these hierarchical relations are an important data mining and exploration task that cannot be
addressed conveniently within the growing neural gas or SOM models. Some approaches are
presented in the related work section.

In this paper we propose a novel algorithm called GSoT : Growing Self-organizing Trees.
The algorithm is based on the Growing Neural Gas algorithm [5] and an original autonomous
hierarchical clustering method named AntTree [6]. One of the main contributions of GSoT is
that the output space consists of a set of trees (hierarchical trees) arranged according to cer-
tain topology (called network) usually in one or two dimensional space (Fig. 1). Additionally,
in our approach the number of trees are incremental and the tree topology is evolutive. The

- 21 -

Doan et al.

particularity of these trees with respect to other existing approaches is that each node of tree
represents one data object. This allows for an immediate comparison between data and visua-
lization. It can be exploited by descending from topological level (network) to the last level of
trees, which provides useful information about the clustering and the data structure and topo-
logy.

The key idea of GSoT algorithm is to successively add new trees to an initially small net-
work by evaluating local statistical measures gathering during the previous adaptation steps.
In GSoT, during one epoch, we generate a number of trees corresponding to the network size.
To build trees, we have developed self-assembly rules inspired from AntTree [6]. AntTree is a
hierarchical clustering method using artificial ants that are totally adaptive to self-organizing
models. Data (ants) move locally toward tree structure without a centralized control policy and
without using parameters. In classical hierarchical clustering methods, an object is assigned to
a cluster and will not be considered again. A correction of previous misclassification is not pos-
sible. On the other hand, AntTree rules overcome this limitation by allowing a self-adaptation
of structure of tree topology during training.

(a) GSoT structure : two trees lin-
ked by a topological connection

(b) New GSoT structure adapting
to the insertion of new neuron

FIG. 1 – The GSoT architecture in two successive epochs of growing process. Each tree node
represents one data object.

TAB. 1 – Different aspects of hierarchical approach

Algorithm Hierarchy of Output trees Node type Data per Node
GH-SOM [7] prototype single vector single
SOM-AT [8] data single attribute single
TreeSOM [9] prototype / data single vector variant
S-TREE [10] prototype single vector single
SOTree [11] data single vector single

TS-SOM [12] prototype single vector single
HOGNG [13] prototype single vector variant
TreeGNG [14] layer single vector variant

GSoT data multiple vector single

In general, data structure of GSoT is both topological and hierarchical as the example de-

- 22 -

GSoT for Knowledge Discovery from Data

picted in Fig. 1. In our representation, black square node refers to support (network node) ;
circle node refers to tree node, which corresponds to an input data object. Two trees are topo-
logical neighbors if an edge is created between their supports. First, the network is initialized
with just two supports (Fig. 1(a)). These supports are regarded as the tree roots. Having com-
pleted connecting data to their best match tree, we add new support to extend the network size.
The next step is to compute new assignments for input data. Once data have found their new
best match tree again, we disconnect and reconnect them (with their associated sub-tree) from
the old to the new tree. Incrementally, we obtain several hierarchical trees while the training
step still proceeds (Fig. 1(b)).

The remainder of this paper is organized as follows : we briefly describe the novelty fea-
tures over existing methods in Section 2. Section 3 is devoted to our model. We present the
experiments with numerical and visual results in Section 4. In the final Section 5, we draw our
conclusions and perspectives.

2 GSoT versus other hierarchical methods
Self-Organizing models are very efficient approaches to solve clustering problems. Two

well-known models are SOM [1] and GNG which share the same principle of topological pre-
servation and vector quantization. There are tree-structured variations to the GNG algorithm
such as HOGNG [13] or TreeGNG [14]. Because of the similar architecture, we are also inter-
ested in studying hierarchical SOM variants such as GH-SOM [7], SOM-AT [8], S-TREE [10],
SOTree [11], TreeSOM [9] and TS-SOM [12]. An overview on various features of these me-
thods and GSoT is summarized in Table 1. Here we want to differ our method from the others
in several principal features such as the basic hierarchical structure, the number of output trees,
the type of node and the number of data per node.

GNG and SOM have some common features, but the difference is the network size. While
the size of SOM must be defined a priori, the size of GNG may vary during training process. In
general, the methods in Table 1 are different from each other in one or several features. While
GSoT propose simultaneously to build many trees, the others have construct only a single tree.
GH-SOM, TS-SOM approaches proposed a structure where each prototype becomes one node
of tree. Having the same idea, S-TREE grows a binary tree from prototype vectors. SOTree
provides a 2D grid modeled by a hierarchical tree to visualize data. TreeSOM generates a hie-
rarchical tree where only the leaf nodes may get many data elements, and other nodes none
at all. SOM-AT based on introducing matching and adjusting schemes for input data attribute
trees. The most optimal tree is selected to represent input data. TreeGNG tries to build a tree
whose nodes contain a group of data. These data groups are determined by GNG algorithm.
HOGNG aims to generate two hierarchical layers where the second one is expanded for over-
lapped data.

Using tree-structured representation provides remarkably more degrees of freedom and ad-
vantage to analyze input data. GSoT facilitates visualizing clusters as multi-hierarchical trees
topologically connected to each other. GSoT trees describe relations between pairs of data. In
fact, the structure of other hierarchical clustering methods are usually depicted by a binary tree
or dendrogram. In such types of tree-like structure, only leaf nodes are regarded as data ob-
jects. The other nodes, thus, describe the proximity of objects. Once an object is assigned to a
cluster, it will not be considered again. When positions of data in structure are fixed, those hie-

- 23 -

Doan et al.

rarchical clustering methods are not capable of correcting possible previous misclassification.
However, this problem can not be seen in our method due to the possibility of connecting or
disconnecting data from the rules we have defined. Hence, this is very easy to adapt to growing
networks.

3 Growing Self-organizing Tree

3.1 GSoT principle

Growing algorithm is an adaptive process in the sense that the network moves the cells to
cover the data distribution. In other words, the cells follow the probability density of input data.
Statistical information is used for determining appropriate place where to insert a new cell in
the network [2]. Due to the nature, the network size is incremental over time, the evolutive
topology of network depends on input data. The position of reference vector may vary on the
random selection for training. A connection has an age variable used to decide when to remove
old edges in order to keep the topology updated.

GSoT is autonomous method since we have very limited parameters. We do not have to
fix the number of observations used in assignment step as the traditional GNG does. Our me-
thod progressively constructs tree-like organization over time. The only parameters needed are
stopping criteria as quantization error threshold. The algorithm can aslo terminate as maximum
number of trees have been reached.

3.2 GSoT batch algorithm

Algorithm 1 GSoT batch algorithm
1. intialize two supports at random positions in <d as well as the two respective trees.

2. initialize the data list List.

3. select randomly vi from List.

4. assignData : find the nearest support s1 ∈ S
5. – if vi is initial, trees1 ← buildTree(trees1 , vi)

– if vi is disconnected, trees1 ← buildTree(trees1 , subtreevi)
– if vi is connected and s1 6= sold, subtreevi ← disconnect vi and all the data recursi-

vely connected to vi from treesold ; trees1 ← buildTree(trees1 , subtreevi)

6. vi is not connected, put vi onto List ; otherwise, remove subtreevi from List.

7. S ← updateSupport(S) : update supports.

8. if List is not empty, go to step 3 ;
else S ← addSupport(S) : add new support.

9. if the stopping criterion are not yet fulfilled go to step 2.

- 24 -

GSoT for Knowledge Discovery from Data

Let <d be the Euclidean data space and X = {xi; i = 1, . . . , N} a set of observations,
where each observation xi = (x1i , x

2
i , ..., x

d
i) is a vector in <d. In our approach, each node vi

of the tree is associated with observation xi. The network of trees we consider consist of :
– A set S of supports (or cells). Supports don’t contain any information of input data. Each

support si ∈ S is the root of the corresponding tree denoted treesi . A tree is associated
to a reference vector (prototype) wsi ∈ <d.

– A set E of connections among pairs of supports. These connections preserve the to-
pological relations in the network. Connections are characterized by a variable called
"age".

A node vi (i = [1,...,N]) has only one among three status at a time :
– initial : the default status before training,
– connected : the node is currently connected to another node,
– disconnected : the node were connected at least once but now gets disconnected.

We denote by a set List which contains all nodes. Before training, List contains only initial
nodes. Whenever a node becomes connected, it is immediately removed from List ; alterna-
tively whenever a node and its children get disconnected from a tree, we put them back onto
List. If List becomes empty, we terminate the current training epoch. We refresh List to train
data again if the stopping criteria haven’t been met yet. Let us denote

– vpos is the support (the root of tree) or the node position where vi is located. At the
beginning, vi is located on the support and will move in the tree (toward another nodes)
in order to find the best position.

– v+ and v− two nodes connected to vpos which are respectively the most similar and
dissimilar node to vi.

– subtreevi consists of the root vi and all the nodes recursively connected to vi.
The batch algorithm is shown in Algorithm 1. In order to stop the algorithm autonomously, we
can employ a threshold of quality measure such as quantization error. Or simply, we just consi-
der a number of trees as stopping criterion. Four important steps are presented as following.

Assignment step

FIG. 2 – Group assignment

This step corresponds to the function assignData used in Algorithm 1. There are two
distinct types of assignment :

1. a single data object.
φ(vi) = argmin ‖ xi −ws1 ‖2

- 25 -

Doan et al.

2. a subtree, subtreevi and φ(subtreevi) = φ(vj) = φ(vi) ∀vj ∈ subtreevi .
For each training iteration, we determine the winner support s1 such that ws1 is the most
similar (using Euclidean distance) with the input sample xi. Node vi associated with xi, is
assigned and connected to the respective tree (i.e trees1). If vi has initial status or does not
have any node connected to it, the assignment for single node vi is simply succeeded. Other-
wise, for subtreevi , we repeat the same process for vi as in the previous case. Then all node
vj ∈ subtreevi is going to automatically follow vi and gets assigned to trees1 .

An example of sub-tree assignment is shown in Figure 2. Given that subtreev constituted
by three silver data is no longer connected to treesold . Now we have to determine the new best
match support s1 (or trees1) for the root of subtreev (i.e the node v). The assignment of its
two child nodes follows the one of v using the statistical characteristics of tree. Even though
these three nodes are now found in s1, their hierarchy in new support always remains as the
one in the old one (i.e. in sold).

Tree construction

This step can be essentially realized by the function buildTree. The connecting and discon-
necting rules are stated as following : In Algorithm 2, TDissim(vpos) is denoted as the lowest

Algorithm 2 buildTree : rules of building tree

R 1. less than 2 data connected to vpos
connect vi to vpos

R 2. more than 2 data connected to vpos and for the first time
TDissim(vpos) = min(sim(vi, vj)) where vi and vj are any pair of nodes connected to
vpos and sim(vi, vj) = ||xi − xj ||2
If sim(vi, v

+) < TDissim(vpos), disconnect v− from vpos (and recursively all child
nodes of v−) and connect vi to vpos
Else move vi to v+

R 3. more than 2 data connected to vpos and for the sencond time
If sim(vi, v

+) < TDissim(vpos), connect vi to vpos
Else move vi to v+

similarity value which can be observed among the children of vpos. vi is connected to vpos if
and only if the connection of vi decreases further this value. Since this minimum value can
only be computed with at least two nodes, then the first two data are automatically connected
without any test in Rule 1. This may result in "abusive" connection for the second data. There-
fore the second data is removed and disconnected as soon as the third one is connected (Rule
2). For this latter one, we are certain that the similarity test has been successful. We allow to
disconnect data only once from vpos during training to assume the convergence of the algo-
rithm. If we have already disconnected data from vpos, the Rule 3 is employed. We remind that
each time data are connected, they are immediately removed from List ; otherwise if they are
disconnected, they are put back onto List.

- 26 -

GSoT for Knowledge Discovery from Data

During the training, the disconnected data are put back into List. These data will get ano-
ther assignment so that their misclassification can be corrected. In practice, there are three
distinct cases of disconnection :

1. disconnect data due to an assignment.

2. disconnect data when we try to connect data in Rule 2.

3. disconnect a tree due to that the corresponding support is removed during update step.

(a) Disconnection of sub-tree (b) Reconnection of sub-tree

FIG. 3 – Disconnecting/reconnecting sub-tree

A simple example of disconnection/reconnection for a sub-tree of data is illustrated in
Figure 3. Given trees2 as in Figure 3(a), v is to disconnect from trees2 . All the node connected
to v must be recursively disconnected too. Therefore subtreev (consists of three silver data)
have disconnected status and are put back onto List. After getting new assignment, v is going
to connect to trees1 . It leads to that the children of v (if they are still disconnected) have s1
as their best match support too. We systematically connect this sub-tree to s1 following the
call of buildTree function. Eventually, the network is updated and shown in Figure 3(b). While
reconnecting a sub-tree, we always want to keep its structure. This gives a benefit in time
execution.

Updating supports

The function updateSupport is devoted for this step which is necessary to compute new
positions for supports. Topological neighbors are taken into account in order to update sup-
ports. Here in Algorithm 3 we follow the same process as in GNG.

- 27 -

Doan et al.

Algorithm 3 updateSupport : updating the supports

1. add the squared distance between the nearest unit ws1 and the input data xi to the local
error :

errors1 = errors1+ ‖ ws1 − xi ‖2

2. move s1 and its direct topological neighbors (i.e. all nodes connected to s1 by an edge)
toward vi by fractions εb and εr, respectively, of the total distance :

∆s1 = εb(xi −ws1)

∆r = εr(xi −wr)

for all direct neighbors r of s1
3. find the second nearest support s2 of vi. If trees1 and trees2 are connected by an edge,

set the age of this edge to zero. Otherwise, create new edge between them.

4. remove edges with an age larger than Maxage. If this results in no emanating edges,
remove them as well.

5. decrease all errors by multiplying them with a constant β.

6. repeat the step 1 for data which followed a group assignment with vi

Inserting new support

The network is flexible by adding new supports, which can be seen in Algorithm 4. It can
be done if only we have successfully connected all the data from List to trees. When a new
support is inserted into the network, we have to define the tree associated with this support.
Once the tree has been initialized, List must be refreshed in order to redo the assignments
again. This explains why GSoT is able to avoid misclassification of previous step.

Algorithm 4 addSupport : adding new support into the network

1. find the support q with the maximum accumulated error.

q = argmax(errorsi) ∀si ∈ S

2. insert a new support t halfway between q and its neighbor f with the largest error :

wp =
1

2
(wq −wf)

3. insert edges connecting p with q and f , and remove the edge between q and f .

4. decrease the local errors of q and f by multiplying them with a constant α, and initialize
the error value of p with the new value of the error of q.

- 28 -

GSoT for Knowledge Discovery from Data

4 Experiments

4.1 Set-up parameters and quality criterion
Concerning numerical results, we’re interested in comparing our model with algorithms

that possess similar architecture such as GNG and MST (Minimum Spanning Tree) [15]. In
this case we adopt the same parameters for GSoT and GNG : a maximum number of trees
(max = 10 or 30) as stopping criterion, a maximum of age (max = 50), random initialization
and scaling factors for the reduction of error of nodes (α = 5.10−2, β = 5.10−3, εb = 0.1,
εr = 5.10−4). For MST, we build the proximity graph using Prim’s algorithm [16]. Then the
nine longest edges are removed from this proximity graph in order to obtain ten separated clus-
ters. Unlike others, MST builds one invariable tree which resulted in the obtained clusters to
be independent from the random initialization.

In order to evaluate the performance, we select three different criteria : Accuracy, Norma-
lized Mutual Information [17] and Rand index ; each should be maximized. Given a set of N
objects of L classes classified intoK clusters and two partitions to compare :X = {x1, .., xN}
where xk ∈ [C1..CK] a random variable for cluster assignments, Y = {y1, .., yN} where
yl = [B1..BL] a random variable for the pre-existing labels. Hence, the contingency table can
be expressed as in Table 2 :

TAB. 2 – Contingency table
B\C C1 C2 · · · Ck · · · CK Sum
B1 n11 n12 · · · n1k · · · n1K N1∗
B2 n21 n22 · · · n2k · · · n2K N2∗
...

...
...

. . .
...

. . .
...

...
Bl nl1 nl2 · · · nlk · · · nlK Nl∗
...

...
...

. . .
...

. . .
...

...
BL nL1 nL2 · · · nLk · · · nLK NL∗
Sum N∗1 N∗2 N∗k N∗K N

The Accuracy (Purity) is defined as follows :

Acc =

∑
kmaxl=[1..L](nlk)

N
(1)

The Normalized Mutual Information is given by the following expression :

NMI =

∑
l

∑
k nlk log2(

N.nl,k

Nl∗N∗k
)

(
∑

lNl∗log2(Nl∗
N))(

∑
kN∗klog2(N∗k

N)
) (2)

The Rand Index is defined straightforwardly as

Rand = (N00 +N11)/
(

N
2

)
(3)

where N11 is the number of pairs that are in the same cluster in both B and C ; N00 is the
number of pairs that are in different clusters in both B and C.

- 29 -

Doan et al.

4.2 Competitive performance

TAB. 3 – Competitive performance
Data-set Method Accuracy NMI Rand

GSoT 0.962 0.479 0.656
Cancer GNG 0.957 0.484 0.618

MST 0.691 0.097 0.567
GSoT 0.809 0.803 0.969

Coil20 GNG 0.782 0.805 0.968
MST 0.181 0.353 0.360
GSoT 0.856 0.540 0.761

Ecoli GNG 0.848 0.542 0.753
MST 0.639 0.363 0.622
GSoT 0.703 0.414 0.754

Glass GNG 0.700 0.410 0.750
MST 0.672 0.374 0.681
GSoT 0.892 0.075 0.291

Ionosphere GNG 0.883 0.081 0.309
MST 0.894 0.046 0.684
GSoT 0.954 0.641 0.789

Iris GNG 0.918 0.634 0.759
MST 0.840 0.559 0.780
GSoT 0.676 0.094 0.514

Sonar GNG 0.673 0.096 0.513
MST 0.634 0.148 0.508
GSoT 0.930 0.462 0.558

Thyroid GNG 0.907 0.458 0.566
MST 0.772 0.241 0.553
GSoT 0.934 0.594 0.761

Wine GNG 0.910 0.559 0.740
MST 0.634 0.453 0.666
GSoT 0.624 0.648 0.939

Yale GNG 0.593 0.613 0.933
MST 0.600 0.612 0.911

To show experimentally the efficiency of GSoT on data with known properties, we have ap-
plied three algorithms to real world databases. The real databases are available in the Machine
Learning repository. Additionally, we selected two image databases : Coil20 [18] consists of a
set which contains images of 20 different objects with 72 images per object ; Yale [19] contains
165 grayscale images of 15 individuals. Each data-set has been normalized before training.

All results which are presented in Table 3 and the radar charts in Fig. 4 have been averaged
over 10 runs. We can observe the results given by different methods for 10 clusters and 30

- 30 -

GSoT for Knowledge Discovery from Data

clusters for Coil20 and Yale. In practice GSoT manages to output better values of quality mea-
sures than GNG in most of selected databases. MST is always less efficient than the two others.
Because of the poor performance, MST should be avoided. The most significant cases where
GSoT dominates all three measures are Cancer, Iris, Wine and Yale data-set. Particularly, for
Coil20, our method provides better Accuracy than the others (i.e. Acc = 0.809 vs 0.782 and
0.181). For Ecoli we have better values in Accuracy (Acc = 0.856) and Rand index (Rand =
0.761). Finally for Yale, even though GSoT and GNG are almost equal to Rand index, our
algorithm obtains higher values of Accuracy (Acc = 0.624) and NMI (NMI = 0.648).

(a) Rand index (b) Normalized mutual information

(c) Purity

FIG. 4 – Quality criterion of each database

4.3 Discussions : Number of assignments
In fact, the trees of GSoT are considered as an intermediary step to memorize all the assi-

gnments of the previous epoch. Fig. 5 displays the percentage of assignments of every database
during training. The x-axis refers to the number of epochs and the y-axis the ratio of the num-
ber of assignments over the number of data. The whole data-set must be trained by the GNG
algorithm (i.e Ratio = 100%) but the GSoT algorithm uses only a small proportion of data

- 31 -

Doan et al.

to train in each epoch. At the beginning, the number of assignments start from 100%. Then,
the number of new assignments should be decreased epoch after epoch because only a small
ratio of data must be re-assigned to new tree. Most of selected databases are in this case, the
ratio goes down to 40% after 29 first epochs. However, it should be noted that data can get
disconnected and assigned to another best match tree several times due to autonomous rules
of connections/disconnections and the update of supports in an epoch. It explains that several
curves go up sometimes such as in Cancer, Coil20 and Thyroid.

FIG. 5 – Percentage of new assignments during training process for all chosen databases

4.4 Visual validation
This experimental phase shows how the proposed method provides further information than

other clustering approaches. The main advantage is to provide a simultaneous organization :
topological and hierarchical. This simplifies data exploration by offering friendly and interac-
tive visualization. We use Tulip [20] as the framework to visualize and analysis network. Fig.
6 and 7 respectively show the evolution of Ecoli and Coil20 data structure provided by GSoT
in successive epochs. We arrange data into a new organization which is more visible and easier
to visualize and analyze. The supports whose appearance are black and square are located in
the center surrounded by trees. We have a tree associated with one support and the tree root is
attached to this node. We provide the multi-level structure given by GSoT when the network
size is [2, 5, 10] for Ecoli and [2, 10, 20] for Coil20. For each time, a view displays unique
colors for different input classes.

In Fig. 6, we can certainly observe the clusters given by GSoT, most of them are presented
by major tree. For Ecoli database, we have 336 data grouped into eight classes. In this data-set,
there are two classes with only two data (purple and orange, these data are often misclassified
with a majority vote. When network has two or five neurons (Fig. 6(a) and 6(b)), we are not
able to detect all the input classes. When the size of network increases and is superior than the
number of input classes, we can remark some big clusters in Fig. 6(c).

The visual result of Coil20 agrees with the previous one, we always found large trees in
Fig. 7. Several pure clusters such as celeste and maroon classes can be clearly seen in Fig. 7(c).
Because a vector of Coil20 describes an image, we zoom into two samples extracted from Fig.

- 32 -

GSoT for Knowledge Discovery from Data

(a) 2-tree network (Rand = 0.674 ; NMI = 0.421 ; Pu-
rity = 0.616)

(b) 5-tree network (Rand = 0.821 ; NMI = 0.550 ;
Purity = 0.726)

(c) 10-tree network (Rand = 0.869 ; NMI = 0.637 ;
Purity = 0.794)

FIG. 6 – Ecoli : data structure presented by the GSoT algorithm. Each color represents one
real class of input data.

7(c) in order study the similarity between images in hierarchical sub-trees. We just take only
two first level of sub-tree shown in Fig. 8 : one from the celeste cluster (the top square in
Fig. 7(c)) and another from a mixed cluster (the bottom square in Fig. 7(c)). The first zoom
shows a good classification. The same type of objects (cup) are grouped together, GSoT well
separated cup class where symbol is visible. For the second, even though we grouped images
of different objects in the same cluster, the geometric shapes of objects are quite similar (car).
In sub-treesm car objects turn in the same direction of their parent node.

Our approach tries to improve the standard visualization by building topological and hie-
rarchical ordered clusters. Atypical data are precisely pinpointed with this approach and can
be further studied. Furthermore, we can directly visualize data in form of hierarchical and to-
pological trees without projecting like PCA. In practice, analysts can apply our multi-structure

- 33 -

Doan et al.

(a) 2-tree network (Rand = 0.685 ; NMI = 0.356 ;
Purity = 0.146)

(b) 10-tree network (Rand = 0.895 ; NMI =
0.559 ; Purity = 0.368)

(c) 20-tree network (Rand = 0.945 ; NMI = 0.735 ; Pu-
rity = 0.612)

FIG. 7 – Coil20 : data structure presented by the GSoT algorithm. Each color represents one
real class of input data.

to image indexation and exploration (search engine).

- 34 -

GSoT for Knowledge Discovery from Data

(a) First zoom sample : images belong to one class (b) Second zoom sample : images belong to three dif-
ferent classes

FIG. 8 – Zoom views of Coil20

5 Conclusion

In this paper, we have proposed a topological and hierarchical model based on growing
process and autonomous tree building technique. This model allows to generate hierarchical
relations between pairs of data and topological relations between two trees. The proposed
algorithm is able to appropriate clustering the data in all runs and brings advantage in reducing
the number of training assignments. GSoT works well on several real world data-sets through
the experiments. In addition, with the proposed structure, GSoT offers friendly and interactive
visualization for input data.

As perspectives, there are a number of interesting potential avenues for future research in
growing self-organizing trees. We could additionally incorporate some label into the clustering
process. The objective is to optimize a semi-supervised clustering by using the constraints
provided by trees structures. Another possibility would be to explore the features selections
techniques by ranking features based on their spatial distribution and their trees position.

Références

[1] T. Kohonen, M. R. Schroeder, and T. S. Huang, editors. Self-Organizing Maps. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 3rd edition, 2001.

[2] Bernd Fritzke. A growing neural gas network learns topologies. In Advances in Neural
Information Processing Systems 7, pages 625–632. MIT Press, 1995.

[3] Dieter Merkl Michael Dittenbach, Andreas Rauber. Uncovering hierarchical structure in
data using the growing hierarchical self-organizing map. Neurocomputing, 48(1-4) :199–
216, October 2002.

[4] JosÃ c© Alfredo F. Costa and Ricardo S. Oliveira. Cluster analysis using growing neural
gas and graph partitioning. In IJCNN, pages 3051–3056. IEEE, 2007.

[5] Bernd Fritzke. Unsupervised clustering with growing cell structures. In In Proceedings
of the International Joint Conference on Neural Networks, pages 531–536. IEEE, 1991.

- 35 -

Doan et al.

[6] Hanene Azzag, Gilles Venturini, Antoine Oliver, and Christiane Guinot. A hierarchical
ant based clustering algorithm and its use in three real-world applications. European
Journal of Operational Research, 179(3) :906–922, June 2007.

[7] Michael Dittenbach, Dieter Merkl, and Andreas Rauber. The growing hierarchical self-
organizing map. pages 15–19. IEEE Computer Society, 2000.

[8] Markus Peura. The self-organizing map of trees. Neural Process. Lett., 8 :155–162,
October 1998.

[9] Elena V. Samsonova, Joost N. Kok, and Ad P. Ijzerman. Treesom : Cluster analysis in
the self-organizing map. neural networks. American Economic Review, 82 :1162–1176,
2006.

[10] Marcos M. Campos and Gail A. Carpenter. S-tree : self-organizing trees for data cluste-
ring and online vector quantization. Neural Netw., 14 :505–525, May 2001.

[11] Hanene Azzag and Mustapha Lebbah. Self-organizing tree using artificial ants. JITR,
4(2) :1–16, 2011.

[12] Pasi Koikkalainen and Ismo Horppu. Handling missing data with the tree-structured self-
organizing map. In IJCNN, pages 2289–2294, 2007.

[13] Xiang Cao and Ponnuthurai N. Suganthan. Video shot motion characterization based on
hierarchical overlapped growing neural gas networks. Multimedia Syst., 9(4) :378–385,
2003.

[14] Kevin Doherty, Rod Adams, and Neil Davey. TreeGNG - hierarchical topological cluste-
ring. In ESANN, pages 19–24, 2005.

[15] Oleksandr Grygorash, Yan Zhou, and Zach Jorgensen. Minimum spanning tree based
clustering algorithms. In Proceedings of the 18th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI ’06, pages 73–81, Washington, DC, USA, 2006.
IEEE Computer Society.

[16] R. C. Prim. Shortest connection networks and some generalizations. Bell System Tech-
nology Journal, 36 :1389–1401, 1957.

[17] Alexander Strehl, Joydeep Ghosh, and Claire Cardie. Cluster ensembles - a knowledge
reuse framework for combining multiple partitions. Journal of Machine Learning Re-
search, 3 :583–617, 2002.

[18] Deng Cai, Chiyuan Zhang, and Xiaofei He. Unsupervised feature selection for multi-
cluster data. In 16th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD’10), 2010.

[19] Deng Cai, Xiaofei He, Yuxiao Hu, Jiawei Han, and Thomas Huang. Learning a spatially
smooth subspace for face recognition. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition Machine Learning (CVPR’07), 2007.

[20] D. Auber. Tulip : A huge graph visualisation framework. In P. Mutzel and M. Jün-
ger, editors, Graph Drawing Softwares, Mathematics and Visualization, pages 105–126.
Springer-Verlag, 2003.

- 36 -

GSoT for Knowledge Discovery from Data

Summary
Dans cet article, nous présentons une nouvelle méthode d’apprentissage non supervisé

basée sur le "Growing Neural Gas" et en utilisant des règles d’auto-assemblage pour con-
struire des structures hiérarchiques. Notre méthode nomée Growing Self-organizing Trees
(GSoT) représente les données avec une organization multi-niveaux: topologique et hiérar-
chique. Nous montrons dans les expérimentations sur des bases de données réelles que GSoT
offre de nouveaux outils pour partitionner, explorer les données et extraire des connaissances.

- 37 -

Incremental mining of frequent sequences from a window
sliding over a stream of itemsets

Thomas Guyet∗,∗∗, René Quiniou∗∗∗

∗AGROCAMPUS OUEST, UMR6074 IRISA, F-35042 Rennes
∗∗Université européenne de Bretagne

∗∗∗INRIA Centre de Rennes - Bretagne Atlantique

Abstract. Nous introduisons le problème de fouille des séquences fréquentes
dans une fenêtre glissante sur un flux d’itemsets. Pour résoudre ce problème,
nous présentons un algorithme incrémental, complet et correct, basé sur une
représentation des séquences fréquentes inspiré par l’algorithme PSP et sur une
méthode de comptage des occurrences minimales. Les expériences ont été menées
sur des données simulées et sur des données réelles consommation instantanée
d’électricité. Les résultats montrent que notre algorithme incrémental améliore
de manière significative le temps de calcul par rapport à une approche non-
incrémentale.

1 Introduction
Sequential pattern mining has been studied extensively in static contexts (Masseglia et al.

(1998); Pei et al. (2004); Srikant and Agrawal (1996)). Most of the proposed algorithms make
use of the Apriori antimonotonicity property stating that if a pattern is frequent then all its sub-
patterns are also frequent. All these algorithms make use of a pattern counting method based
on the number of transactions that contain the pattern without taking into account the multiple
occurrences of the pattern in a transaction.

Counting the number of occurrences of a motif, or episode, in a window introduces some
complexity compared to previous approaches as two occurrences of an episode can overlap.
Mannila et al. (1997) introduced the algorithms Minepi and Winepi for extracting frequent
episodes and counting their minimal occurrences. Since then, other counting methods have
been proposed to solve this problem while preserving the antimonotonicity properties required
for the effectiveness of pattern occurrences search (see Achar et al. (2010)).

In the context of data streams, where data arrive in a continuous flow, specific algorith-
mic solutions must be designed for the extraction of frequent sequences. A common practice
consists in sliding a window over the data and then in extracting frequent episodes from the
successive itemsets inside this window. But the itemset series is evolving continuously: when
a new itemset arrives, the oldest itemset at the beginning of the window becomes obsolete.
In existing static approaches, it is necessary to restart an entire mining process to extract the
frequent episodes of the new period.

As the context of data streams imposes to process the incoming data very fast, the naïve
approach above has a prohibitive computation time. Thus, an incremental method that updates

- 39 -

Incremental mining of frequent sequences

efficiently the current set of sequential patterns is needed. We propose a method based on a
representation of frequent sequences inspired by PSP (Masseglia et al. (1998)), an improve-
ment of GSP (Srikant and Agrawal (1996)) for mining frequent itemset subsequences from a
database of sequences of itemsets. This representation enables an efficient update of sequential
pattern occurrences due to new data and obsolete data as well.

In section 2, we present related work. In section 3, we present a formal setting of the prob-
lem of mining itemsets from a data stream. In section 4, we present an incremental algorithm
that solves this problem. In section 5, we introduce the data structure used to collect the history
of frequent sequences. In section 6, we present experimental results on simulated data as well
as real data related to instantaneous power consumption.

2 Related work
Since the publication of the seminal paper of Agrawal et al. (1993) establishing the foun-

dations of itemset mining, many proposals have been made. We are particularly interested in
sequential pattern mining, with a special focus on incremental and progressive methods, such
as those proposed in the field of data streams.

Many methods have been proposed to discover frequent subsequences or sequential pat-
terns either from a sequence database or from a single long sequence, in a static context or in
data streams. GSP (Srikant and Agrawal (1996)), PSP (Masseglia et al. (1998)), PrefixSpan
(Pei et al. (2004)), Spade (Zaki (2001)), Spam (Ayres et al. (2002)), to cite a few, proposed
different approaches to the problem of mining sequential patterns (i.e. frequent sequences of
itemsets) from a static sequence (of transactions) database. There are less proposals for min-
ing frequent recurring patterns from a single long sequence. Minepi, Winepi (Mannila et al.
(1997)), WinMiner (Méger and Rigotti (2004)), for instance, count the minimal occurrences
of episodes in a given sequence, while Laxman et al. Laxman et al. (2007) counts the non-
overlapped occurrences of episodes. These approaches consider either serial episodes where
items (events) are strictly ordered or parallel episodes where items are unordered. Recently,
Tatti and Cule (2011) introduced episodes with simultaneous events where multiple events may
have the same timestamp, aiming at handling quasi-simultaneous events. These works do not
address compute th whole set of frequent sequential patterns and do not address the problem
of forgetting obsolete data.

Data streams introduce a challenge to sequential pattern mining since data are received
at high rate and are possibly infinite. To cope with such massive data, several approaches of
itemset mining in data streams have proposed approximate solutions based on landmark win-
dows (Manku and Motwani (2002)), tilted-time windows (Giannella et al. (2004)), damped
windows (Chang and Lee (2003)) or sliding windows (Li and Lee (2009)). Few proposals
have been made for sequential pattern mining over data streams. Chen et al. (2005) consider
multiple streams recoded as a (single) sequence of itemsets grouping the items occurring at
more or less the same time. Their algorithm Mile adapts PrefixSpan to mine frequent se-
quences that appear in a sufficient number of fixed size windows. SPEED (Raïssi et al. (2006))
considers successive batches of sequences extracted from a data stream. Frequent sequential
patterns are stored in a tilted-time based structure which prunes less frequent or too old pat-
terns.Marascu and Masseglia (2006) propose to cluster stream data to build a summary from
which sequential patterns can be extracted. IncSpam (Ho et al. (2006)) uses a bit-sequence rep-

- 40 -

T. Guyet et al.

resentation of items to maintain the set of sequential patterns from itemset-sequence streams
with a transaction-sensitive sliding window. Most of these approaches aim at maintaining a
good approximation of the newest and most frequent sequential patterns of the data stream.
Moreover, they deal with a transaction-based scheme representation of the data wheareas we
are interested of mining sequential patterns from a single long sequence.

Mining sequential patterns from data streams is similar to mining sequential patterns incre-
mentally from dynamic databases. ISE (Masseglia et al. (2003)) considers the arrival of new
customers and new items and extends the set of candidate patterns from the original database
accordingly. IncSP (Lin and Lee (2004)) uses efficient implicit merging and counting over
appended sequences. IncSpan (Cheng et al. (2004); Nguyen et al. (2005)) maintains a tree
of frequent and semi-frequent patterns to avoid many multiple scans upon database updates.
However, these incremental methods handle new data but not obsolete data. Recently, some
proposals have been made that view sequential pattern mining as an incremental process: a
window slides continuously over the data and, as time goes by, new data are added to the
window and old data are removed. SSM (Ezeife. and Monwar (2007)) maintains three data
structures to mine incrementally sequential patterns from a data stream. D-List maintains the
support of all items in the data stream. PLWAP tree stores incrementally frequent sequences
from batches. The frequent sequential pattern tree FSP is constructed incrementally from batch
to batch. Pisa (Huang et al. (2008)) mines the most recent sequential patterns of a progressive
sequence database. It maintains a PS-tree (progressive sequential tree) to keep the information
data from a window sliding of the stream. PS-tree stores the timestamped sequence items and
also efficiently accumulates the occurrence frequency of every candidate sequential pattern.
Update operations remove obsolete information and add new information to the three data
structures. Recently, Patnaik et al. (2012) proposed a streaming algorithm for pattern mining
over an event stream. Their aim is to extract the top-k frequent episodes of an arbitrary length
l from the successive batches of a window of interest defined over an event stream. Episodes
are parallel with no overlapping occurrences. They use an Apriori-like method to maintain the
set of top-k episodes on each successive batch. The incremental algorithm makes use of the
negative border to reduce, as much as possible, the set of candidates from one batch to the
other.

3 Basic concepts and problem statement

3.1 Items, itemsets and sequences

From now on, [n] denotes the set of the n first integers, i.e. [n] = {1, . . . , n}.
Let (E ,=, <) be the set of items and < a total order (e.g. lexicographical) on this set. An

itemset A = (a1, a2, . . . , an), ai ∈ E is an ordered set of distinct items, i.e. ∀i ∈ [n−1], ai <
ai+1 and i 6= j ⇒ ai 6= aj . The size of an itemset α, denoted |α| is the number of items it
contains. An itemset β = (b1, . . . , bm) is a sub-itemset of α = (a1, . . . , an), denoted β v α,
iff β is a subset of α.

A sequence S is an ordered series of itemsets S = 〈s1, s2, ..., sn〉. The length of a sequence
S, denoted |S|, is the number of itemsets that make up the sequence. The size of a sequence S,
denoted ‖S‖, is the total number of items it contains ‖S‖ = ∑|S|

i=1 |si|. T = 〈t1, t2, ..., tm〉 is

- 41 -

Incremental mining of frequent sequences

a sub-sequence of S = 〈s1, s2, ..., sn〉, denoted T � S, iff there exists a sequence of integers
1 ≤ i1 < i2 < ... < im ≤ n such that ∀k ∈ [m], tk v sik .

Example 1. Let E = {a, b, c} with the lexicographical order (a < b, b < c) and the sequence
S = 〈a(bc)(abc)cb〉. To simplify the notation, we omit the parentheses around itemsets con-
taining a single item. The size of S is 8 and its length is 5. For instance, sequence 〈(bc)(ac)〉
is a sub-sequence of S.

The relation � is a partial order on the set of sequences.

3.2 Stream of itemsets
A stream of itemsets F = {fi}i∈N is an infinite sequence of itemsets that evolves continu-

ously. It is to be assumed that only a small part of it can be kept in memory.
The window W of size w at time t is the sequence W = 〈fi1 , fi2 , ..., fin〉 such that ∀k ∈

[n], t ≤ ik ≤ t+w and ∀fi ∈ F \W, i < t or i > t+w. The current window of size w of a
stream F is the window beginning at time t− w + 1 where t is the position of the last itemset
appeared in the stream. This window includes the most recent itemsets of the stream.

Definition 1 (Instances of a sequence in a window). The set of instances of a sequence S =
s1, . . . , sn) of length n in a windowW = (w1, . . . , wm), denoted IW (S), is the list of n-tuples
of positions (within W) corresponding to the minimal occurrences of S in W (see Mannila
et al. (1997)).

IW (S) =
{
(ij)j∈[n] ∈ [m] | ∀j ∈ [n], sj v wij , (1)

∀j ∈ [n− 1], ij < ij+1, (2)
(wj)j∈[i1+1,in] � S, (3)
(wj)j∈[i1,in−1] � S } (4)

Condition (1) requires that any itemset of S is a sub-itemset of an itemset of W . Condition
(2) specifies that the order of itemsets of W must be respected. In addition, any itemset of W
cannot be a super-itemset of two distinct itemsets of S. This condition does not impose any
time constraint between itemsets. Conditions (3) and (4) specify minimal occurrences: if an
instance of S has been identified in the interval [i1, in], there can’t be any instance of S in a
strict subinterval of [i1, in].

Example 2. Let W = 〈a(bc)(abc)cb〉 be a window on some stream. We focus on instances of
the sequence S = 〈(ab)b〉. To find an instance of this sequence, we have to locate itemsets of
S: (ab) appears only at position 3 ((ab) v (abc)). b appears at positions 2, 3 and 5. Sequence
S has only one instance: (3, 5). Thus IW (〈(ab)b〉) = {(3, 5)}.

Now, let us consider the window W = 〈acbbc〉 to illustrate the conditions (3) and (4).
Without these conditions, the instances of the sequence 〈ab〉 would be {(1, 3), (1, 4)}. Condi-
tion (4) prohibits the instance (1, 4) because (1, 3) is an instance of 〈ab〉 in the window such
that [1, 3] ⊂ [1, 4]. Thus, IW (〈ab〉) = {(1, 3)}.

ForW = 〈aaaa〉, IW (〈aa〉) = {(1, 2), (2, 3), (3, 4)} and IW (〈aaa〉) = {(1, 2, 3), (2, 3, 4)}.

Let W be a window and S a sequence of itemsets. The support of the sequence S in
windowW , denoted suppW (S) is the cardinality of IW (S), i.e. suppW (S) = card (IW (S)).

- 42 -

T. Guyet et al.

Note that, in the general case, the support function suppW (·) is not anti-monotonic on the
set of sequences with associated partial order � (see Tatti and Cule (2012)).

Definition 2 (Mining a stream of itemsets). Given a threshold σ, we say that a sequence S is
frequent in a window W of size w iff suppW (S) ≥ σ. Mining a stream of itemsets consists in
extracting at every time instant, all the frequent sequences in the most recent sliding window.

In approaches that consider multiple parallel streams, e.g. Ho et al. (2006); Marascu and
Masseglia (2006); Raïssi et al. (2006), the support of a sequence is usually defined as the
number of streams in which this sequence appears. In this work, we consider a single stream
and the support of a sequence is the number of instances of this sequence in the current window
corresponding to the most recent data.

4 Incremental algorithm for mining a stream of itemsets
In this section, we present an incremental algorithm for mining frequent sequences in a

window sliding over a stream of itemsets. The aim of such an algorithm is to efficiently update
the set of frequent sequences following two kinds of window transformations: the addition
of an itemset at the end of the window and the removal of an itemset at the beginning of the
window.

Algorithm 1 presents this general idea of incremental mining an itemset stream. The algo-
rithmic difficulties lie in the functions DETETEFIRST and ADD which must efficiently update
the set of frequent sequences computed so far. These functions will be detailed further in this
section.

Input: F : itemset stream, w: windows size, σ: threshold
1: t← 1
2: while t ≤ w do . Stream beginning
3: α← F(t)
4: A ← ADD(α, A) . Update A by adding itemset α
5: t← t+ 1
6: end while
7: while true do
8: α← F(t)
9: A ← DELETEFIRST(A) . Update A by removing references to the first itemset

10: A ← ADD(α, A)
11: t← t+ 1
12: end while

FIG. 1 – Incremental mining of a stream of itemset F .

The algorithm relies on representing the set of frequent sequences in a tree, the structure of
which is inspired by the prefixing method of PSP of Masseglia et al. (1998). While GSP rep-
resents the set of frequent sequences of itemsets as a tree where the edges mean sequentiality,
PSP represents a set of frequent sequences as a tree with two types of edges: the edges repre-
senting sequentiality between itemsets and the edges representing the composition of itemsets.
Masseglia et al. showed that this representation is equivalent to GSP while requiring less
memory.

- 43 -

Incremental mining of frequent sequences

4.1 Representing sequences by a PSP tree

The set of frequent sequences is represented by a prefix tree, the nodes of which have the
structure defined below.

Definition 3 (Node). A node N is a 4-tuple 〈α, I,S, C〉 where
– α = (a1, . . . , an) is a sequence of size n,
– I = IW (α), the instance list of sequence α in W ,
– S is the set of descendant nodes which represent sequences β = (b1, . . . , bn+1) of size
‖α‖+ 1 such that ∀i ∈ [n], ai = bi, (i.e. bn+1 is a strict successor of an),

– C is the set of descendant nodes which represent sequences β = (b1, . . . , bn) of size
‖α‖ + 1 such that ∀i ∈ [n − 1], ai = bi, an v bn and ∀j < |an|, ajn < b

|an|+1
n ,

(i.e. itemset bn extends itemset an with the item b
|an|+1
n).

Definition 4 (Tree of frequent sequences). Aσ(W) denotes the tree that represents all se-
quences of W having a support greater than σ. The root node of a prefix tree is a node of the
form 〈{}, ∅,S, C〉.

Let N be a node ofAσ(W). The subtree rooted at node N represents the tree composed of
all descendants of N (including N).

Despite the non-general anti-monoticity property of the support, it may be proved that the
support is anti-monotone wrt the PSP-tree relations. If a node has a support greater than or
equal to σ then all its ancestors are frequent sequences in W . In addition, each node – apart
from the root – has a single parent. This ensures that recursive processing the PSP tree is
complete and non-redundant.

Example 3. Let W = 〈a(bc)(abc)cb〉 and σ = 2. Figure 2 shows the treeAσ(W). Solid lines
indicate membership in the set S (Succession in the sequence), while the dotted lines indicate
membership in the set C (Composition with the last itemset). The node (bc)b, highlighted in
gray, has the sequence node (bc) as parent, since (bc)b is obtained by concatenating b to (bc).
The parent node of (bc) is (b) and is obtained by itemset composition (dotted line). At each
node of Figure 2, the instance list of the sequence is displayed in the index. For example, the
sequence (bc)c has two instances: I(〈(bc)c〉) = {(2, 3), (3, 5)}.

FIG. 2 – Example of a tree of frequent sequences (σ = 2)

- 44 -

T. Guyet et al.

a
(1),(2),(3)

b
(1),(2),(3)

c
(1),(4)

aa
(1,2),
(2,3)

(ab)
(1),(2),(3)

ba
(1,2),
(2,3)

bb
(1,2),
(2,3)

(abc)
1

(ab)
2

(ab)
3

c
4

(bc)
5

b
(5)

c
(5)

(bc)
(5)

a
(2),(3)

b
(2),(3),
(5)

c*
(4),
(5)

(ab)
(2),(3)

bb*
(2,3),
(3,5)

ab*
(2,3)
(3,5)

ac
(3,5)
+(2,4)

a(bc)
(3,5)

(ab)b*
(2,3),
(3,5)

(ab)(bc)
(3,5)

bc
(3,5)
+(3,4)

(bc)
(5)

b(bc)
(3,5)

Input
sequence

1. Deletion of the
1st itemset: (abc)

T(bc): Itemset tree of the
new itemset (bc)

(ab)c
(3,5)
+(3,4)

A2(W): Frequent sequence
tree of first window

2-3. Merging and
Completion

4. Pruning of
unfrequent patterns

A2(W'): Final sequence tree
of 2nd window

Ac: Intermediate
sequence tree
of 2nd window

(ab)a
(1,2),
(2,3)

(ab)b
(1,2),
(2,3)

(ab)(ab)
(1,2),
(2,3)

a
(2),(3)

b
(2),(3),(5)

c
(4),(5)

(ab)
(2),(3)

bb
(2,3),
(3,5)

ab
(2,3),
(3,5)

ac
(2,4),
(3,5)

(ab)b
(2,3),
(3,5)Trees to be merged in step 2

a
(2),(3)

b
(2),(3)

c*
(4)

(ab)
(2),(3)

bb*
(2,3)

(ab)b*
(2,3)

A2(<(ab)(ab)c>):
Pruned

diminished tree

ab
(1,2),
(2,3)

ab*
(2,3)

w

w'

FIG. 3 – Successive steps for updating the sequence tree upon the arrival of itemset (bc) in the
window W = 〈(abc)(ab)(ab)c〉.

4.2 Illustration of the method

This section illustrates the principle of the proposed method. For space reasons, the al-
gorithm details have been omitted. The incremental process aims at updating the frequent
sequence tree from data in the most recent window of the stream and determining whether the
sequences are frequent. The arrival of a new itemset in the stream triggers two steps: (1) the
deletion of instances related to the first itemset in the window, (2) the addition of sequences
and instances related to the new incoming itemset (see Figure 1). The addition step carries con-
tributes to most of the computational load. It involves three substeps: merging sub-itemsets of
the new itemset into the current tree, completing the instance lists and pruning non-frequent
sequence nodes.

The deletion step is performed before the addition of a new itemset in order to reduce the
size of the tree before the time-consuming merging and completion substeps.

Let us consider the window W = 〈(abc)(ab)(ab)c〉 of length 4, at position 1 of the stream.
Assume that A2(W), i.e. the sequence tree with support greater than 2, has been already built.
Figure 3 describes the successive steps for transforming the frequent sequence tree A2(W)
into the tree A2(W

′) at the arrival of the new itemset (bc).
1. Deletion of the first itemset: all instances starting at the first (oldest) position of the

- 45 -

Incremental mining of frequent sequences

window (orange instances at position 1, in the example) are deleted. Then, sequences hav-
ing a number of instances less than σ = 2 are deleted from the tree. The result is the tree
A2(〈(ab)(ab)c〉) where a, (ab), b are frequent. Quasi-frequent sequences (marked with a * in
the example) are not frequent but may become frequent as they have have a frequence equal
to σ − 1 and they are ended by an item present in the new itemset, (bc) here. Such nodes are
kept in the frequent tree with their occurence list because no completion (see below) will be
necessary for them.

2. Merging the new current itemset (bc) with every node of the sequence tree: this
step generates all the new candidate sequences of the new window. Intuitively, a sequence is a
new candidate (i.e. potentially frequent) only if it is the concatenation of a sub-itemset of (bc)
to a frequent sequence of 〈(ab)(ab)c〉. In the frequent sequence tree, this concatenation can
be seen as extending each node of A2(〈(ab)(ab)c〉) with the itemset tree T(bc) representing all
sub-itemsets of (bc).

In Figure 3, the tree T(bc) is merged with the four nodes of A2(〈(ab)(ab)c〉) not marked
with a *:

– with the root node (green instances): all subsequences of (bc) become potentially fre-
quent.

– with the nodes a, (ab), b (blue instances): all sequences starting with one of this three
sequences (frequent in 〈(ab)(ab)c〉) and followed by a sub-itemset of (bc) become po-
tentially frequent.

We talk about “tree merging” because if a node already exists in the tree (e.g. node (b)), the
instance related to the new itemset is added to the list of existing instances. The list of instances
of (b) becomes {(2), (3), (5)}. We know that each of these nodes holds all the instances of the
associated sequence in W ′. New nodes are noted in bold face in the frequent tree after the
merging step in Figure 3. Each of these new nodes ofAf , e.g. the node (bc), has an occurrence
list consisting of only one instance of a sub-itemset of (bc). Quasi-frequent nodes (nodes
marked with a *) are not merged with the itemset tree T(bc). Their occurrence lists are simply
updated, if needed.

3. Completion of instance lists: For new candidate nodes but only for those, it is necessary
to scan the window W ′ once again to build the complete list of instances of a sequence. For
example, the node ab is associated with the instance list {(3, 5)}. This list must be completed
with the list of instances of ab in the previous window where it was unfrequent, i.e. {(2, 3)}.
Red instances of the tree Ac in Figure 3 show the instances added by completion.

4. Pruning non-frequent sequences: Ac, the tree obtained after completion, contains
new candidate sequences with complete instance lists. The last step removes sequences with
an instance list of size strictly lower than σ = 2 yielding the tree A2(W

′).

4.3 Merging an itemset tree into a frequent sequence tree

Now, we detail the merging step which integrates the itemset tree T into the sequence tree
A. Then, we explain instance list completion.

Merging the itemset tree T with every node of the frequent sequence treeA consists of two
main steps (see Figure 4):

– prefixing the itemset tree T with the sequence of node N ,
– recursively merging the prefixed T with descendants of node N (cf. Algorithm 5).

- 46 -

T. Guyet et al.

1: function MERGING(A, T)
2: T ′ ← T
3: for N ∈ A do
4: for n ∈ T ′ do . Prefixing T ′
5: n.α = N.α⊕ n.α . Prefixing the sequence with N.α
6: for all I ∈ n.I do . Prefixing the instances with the last element of N.I, noted d
7: I = d ∪ I
8: end for
9: end for

10: RECMERGE(T ′, N) . Recursive merging of T ′ with nodes N of A
11: end for
12: return A
13: end function

FIG. 4 – MERGING: merging the itemset tree T with every node of the sequence tree A.

Let N.α denote the sequence associated with node N from the sequence tree A and N.I
denote the instance list associated with the same node N . For each node N of A, the itemset
tree T is first prefixed by N : on the one hand, the sequences of each node of T are prefixed by
N.α ; on the other hand, all instances of T are prefixed by the last instance of N.I. Using the
last instance of N.I enforces the third property of Definition 1.

Input: n: itemset node tree,N : node of the sequence tree to be merged with n and such that n.α = N.α
1: function RECMERGE(n, N)
2: N.I ← N.I ∪ n.I . Merging instance lists
3: for sN ∈ N.S ∪N.C do . Recursion
4: for sn ∈ n.S ∪ n.C do
5: if sN .α = sn.α then
6: found← True
7: RECMERGE(sn, sN)
8: end if
9: end for

10: if not found then
11: if sn ∈ n.S then
12: N.S ← N.S ∪ {COPY(sn)}
13: else
14: N.C ← N.C ∪ {COPY(sn)}
15: end if
16: end if
17: end for
18: end function

FIG. 5 – RECMERGE: recursively merging the prefixed itemset tree T with a node of A

In a second step, the algorithm recursively merges the root of the itemset tree T prefixed
by N . Algorithm 5 details this merging operation. We must first make sure that n.α = N.α to
verify that the two nodes represent the same sequence. At line 2, instance lists of nodes n and
N are merged. By construction of the new instance, the conditions of Definition 1 are satisfied.

- 47 -

Incremental mining of frequent sequences

Then, the descendants of n are processed recursively. For each node of n.S (resp. n.C), we
search a node sn in N.S (resp. N.C) such that these nodes represent the same sequence. If
such a node is found, then the function RecMerge is recursively applied. Otherwise, a copy
of the entire subtree of sn is added to n.S (resp. n.C).

4.4 Instance lists completion
One of the difficult task is merging the instance lists of nodes n into the one of N . When

a new sequence is introduced in the tree, other instances of this sequence may be present in
the previous window (corresponding to the beginning of the current window) but unfrequent
and, so, they were not stored in the tree (except quasi-frequent sequences). For example, in
Figure 3, the sequence 〈bc〉 (node surrounded by a dotted line square) is not frequent in W
and is not present in the frequent sequence tree A2(W). However, after the arrival of itemset
(bc) the sequence 〈bc〉 may become frequent in W . Thus, it is necessary to scan W ′ to find all
instances of 〈bc〉 to compute its frequency.

For thesake of completeness, the instance list must be completed. To make the completion
efficient, the algorithm uses the projection principle of PrefixSpan to reduce the number of
scans over the sequenceW . For succession nodes, the completion scans only the sub-sequence
of W ′ composed of the itemsets between i|β| + 1 and j|β|−1, where J = (j1, ..., j|β|) is the
instance after I in the list of instances of β. Properties (2) and (4) of Definition 1 ensure that
the completed instance lists are correct and complete. Thus, the overall algorithm is complete
and correct.

4.5 Time complexity analysis
To the best of our knowledge, there exists no results about the theoretical complexity of

the minimal occurrence mining task. Ding et al. (Ding et al. (2009)) have shown that testing
whether the support of a sequence is equal to k is NP for counting non-overlapping instances
and NP-complete for counting strong non-overlapping instances. However, these two counting
methods are not equivalent to minimal occurrences counting.

Two instances (ij)j∈[m] and (i′j)j∈[m] of a sequence S of size m are overlapping if and
only if ∃1 ≤ l < m : il = jl. Two instances are strong-overlapping if and only if ∃1 ≤ l <
m and 1 ≤ l′ < m : il = j′l .

In this section, we estimate the time complexity of updating the frequent tree. For this
purpose, we consider a sequence of items, i.e. consisting of itemsets of size 1 only.

Proposition 1. LetW be a window of size w, ql the size of the vocabulary and σ the frequency
threshold. Considering a sequence S of size n, we denote by Nql,n,σ the number of nodes in
the tree Aσ(S).

The time complexity of updating a frequent sequence tree can be decomposed as follows:
1. Deletion of obsolete instances: O(Nql,w,σ),
2. Merging the current itemset tree with the current frequent sequence tree: O (Nql,w−1,σ),
3. Completion of instance lists (in the worst case): O (Nql,w−1,σ × w)
In the worst case, the time complexity of updating a frequent squence tree is
O (Nql,w,σ × (1 + w) +Nql,w−1,σ)

- 48 -

T. Guyet et al.

Proof. 1. The deletion of the obsolete itemsets is performed by processing each node of
the tree. Considering that we cope with minimal occurrences only and that instance lists
are ordered from the oldest instance to the newest, it is sufficient to process the first in-
stance of instance lists. Pruning is performed during the same operation. Thus, the time
complexity of itemset deletion is O(Nql,w,σ). This step yields the pruned diminished
sequence tree.

2. In case of a sequence of items T , the tree associated with the new itemset, has only
one node. In this case, the merging operation consists in processing each node of the
frequent sequence tree sequentially by adding an instance or by adding a new node. The
overall time complexity is thenO(Nql,w−1,σ) whereNql,w−1,σ is the size of the frequent
sequence tree corresponding to the old window where the first itemset has been deleted.
This step yields the merged sequence tree.

3. In the worst case, i.e. when the new item is not in the merged sequence tree, the number
of created nodes is equal to the number of nodes in the pruned diminished sequence tree,
thus it is lower or equal to Nql,w−1,σ . For each node, the algorithm has to complete the
instance list. In the worst case, the algorithm browses the whole sequence W .

5 Frequent sequences history over the stream
In real applications, it is interesting to highlight the mode changes of the observed system

by analyzing its behavior through frequent sequences. In this section, we describe the construc-
tion of an history of frequent itemsets without trivial matches (Lin et al. (2002)). The history
data structure is computed while processing a stream to give a quick view of the distribution
of frequent patterns over the stream. We do not address the issue of history compression such
as some proposals, e.g. Tilted-Time Windows (Giannella et al. (2003)) or REGLO (Marascu
and Masseglia (2006)). The memory space required by this data structure grows linearly with
time.

Definition 5 (History of frequent sequences). Let S be a sequence. Hσ,w(S) denotes the
history of the sequence S over a stream and is defined by

Hσ,w(S) = ([l1, u1] , . . . , [lm, um]) ,

with li, ui ∈ N such that ∀i ∈ [m], 0 < li ≤ ui and ∀i ∈ [m− 1], ui < li+1.

This means that the sequence S is frequent, according to the threshold σ, in the windows
of size w starting at time t in the stream for all t ∈ [li, ui] with i ∈ [m].

Algorithm of Figure 6 describes the function that updates the sequence history with the
current frequent sequences. This function may be inserted in the algorithm of the Figure 1 line
11 in order to construct the sequence history on the stream. The principle of the algorithm is to
update the history at the end of the processing of the arrival of a new itemset in the sequence.
For each sequence frequent in the window beginning at time t, if the sequence was already
frequent at time t − 1 the last interval is enlarged with the date of the current window ; if the
sequence was unfrequent at t− 1 a new interval is created.

- 49 -

Incremental mining of frequent sequences

Input: t: current window date, A: frequent sequences PSP-tree,Hσ,w: sequences history
1: function HISTORYUPDATE(t)
2: for all N ∈ A do . For all frequent sequence
3: ([li, ui])i∈[m] ← Hσ,w (N.α)
4: if um = t− 1 then
5: um ← t− 1
6: else
7: Hσ,w ← Hσ,w × [t, t]
8: end if
9: end for

10: returnHσ,w
11: end function

FIG. 6 – HISTORYUPDATE: updating the sequence history.

Example 4 (History of frequent sequences). Given the stream F = 〈a(bc)ab(abc)abc(ab)a〉,
the history of frequent sequences for σ = 2 and w = 4 is illustrated by Figure 7. Using
the proposed interval-based structure, the history for sequences a and ba are respectively
Hσ,w(a) = {[1, 7]} andHσ,w(ba) = {[2, 3] , [7, 7]}.

In this Figure 7, a black cell indicates that the sequential pattern for this line is frequent
at the stream position in column. For instance, the sequential pattern 〈ab〉 were frequent only
in the first window of the stream while sequencial patterns a and b were frequent all over the
stream.

FIG. 7 – History of frequent sequences.

6 Experiments and results

Insofar, as there is no pre-existing method that performs the same task as our algorithm
named SEQ, we developed a second naïve algorithm, from now on named BAT . BAT
performs the same task as SEQ, i.e. extracts the frequent sequences from a window sliding on
a data stream, but non incrementally. This algorithm, based on PrefixSpan and using the PSP
tree structure, rebuilds the entire tree Aσ(W) for each consecutive window of size ws on the
data stream.

The algorithms were developed in C++ and executed on a processor at 2.2 GHz, with 2GB
of RAM.

- 50 -

T. Guyet et al.

6.1 Experiments on simulated data

In this section, we compare the results obtained by SEQ with those of algorithm BAT
on experiments over simulated data produced by the IBM data generator. This generator is
usually used to generate transactions, but it can generate a single long transaction as well. The
transaction will simulate a data stream input to algorithms. The results were obtained from
1200 executions performed by varying the parameters ws (window size), σ (minimal support)
and ql (item vocabulary size, card(E)).

The curves below were obtained by averaging the results over all the experiments. For
example, the point on the curve SEQ of Figure 8 - (a) for σ = 5 is obtained by averaging all
the results of experiments running SEQ with σ = 5 when the other parameters vary freely.

We can note first that the memory usage of SEQ is slightly higher than BAT . This comes
from the fact that SEQ makes use of merged trees (Ac in Figure 3) the size of which is a little
larger than the basic tree of frequent sequences. The tree size decreases exponentially when
the vocabulary size grows or the support threshold increases. We can observe this same trend
for memory usage. Finally, we note in Figure 8-(f) that, on average, the window size ws has a
low influence on the required memory.

Figures 8-(a), (c) and (e) show that the computation time of both algorithms is exponential
with the window size ws, but it grows faster than exponential as σ or ql decreases. In such
cases, the number of frequent sequences increases and trees are larger.

On average, the computation time of SEQ is 80 % lower than the computation time of
BAT . Figure 8-(a) shows that the more σ decreases, the larger is the performance gap between
the two algorithms. By contrast, Figure 8-(e) shows that this improvement decreases with the
window size (77 % for ws = 25).

6.2 Experiments on smart electrical meter data

Smart electrical meters record the power consumption of an individual or company in in-
tervals of 30 mn and communicate that “instant” information to the electricity provider for
monitoring and billing purposes. The aim of smart meters is to better anticipate the high con-
sumption of a distribution sector by awarding a consumption profile to each meter, that is to
say, a dynamic model of changes in consumption. However, consumption profiles are not sta-
ble over time. Depending on the period of the year (seasons, holidays), of the week (weekdays,
weekends) or of the day, consumption patterns change in a non-predictable manner. Conse-
quently, there is no meter profile to predict medium to long-term consumption. Our algorithm
can be used to extract, online, profiles of short-term consumption. Similar individual house-
hold electric power consumption may be downloaded from the UCI repository (see Frank and
Asuncion (2010)).

The annual series of instantaneous consumption is a flow of about 18,000 values. We use
the SAX algorithm (Lin et al. (2003)) to discretize the set of consumption values. A vocabulary
size of |E| = 14 and a PAA aggregation windowW = 24 have been chosen. The consumption
profile of a smart meter at time t is the set of frequent consumption sequences during the period
[t− w, t] (sliding window of predefined size w = 28 itemsets, i.e. 2 weeks).

Figure 9 shows the results for 40 meters. The results obtained on these real data are close
to those obtained on simulated data. On the one hand, memory usage is slightly higher for the

- 51 -

Incremental mining of frequent sequences

(a) (b)

(c) (d)

(e) (f)

FIG. 8 – Comparison of processing time (logarithmic scale) and memory usage with respect
to the support threshold σ (with ws < 25), the number of symbols ql (with σ > 3) and the size
of the sliding window ws.

FIG. 9 – Comparison of computation time (left) and memory usage (right) for the mining
power consumption streams.

incremental algorithm but on the other hand, the processing time of SEQ is improved by 89%,
on average, compared to BAT .

- 52 -

T. Guyet et al.

For some meters processing time is very long (about few minutes) while for most of the
meters processing times are around seconds. This disparity is explained by the observed vari-
ability of consumption. The sequences that are difficult to process are quite constant (e.g. in-
dustrial consumption). These sequences include many symbol repetitions leading to many
frequent sequences of repeated symbols.

7 Conclusion and perspectives

We have presented the problem of mining frequent sequences in a sliding window over a
stream of itemsets. To address this problem, we have proposed an incremental algorithm that
efficiently updates a tree data structure inspired by PSP. Our algorithm is based on counting
minimal occurrences of a sequence in a window. The proposed algorithms are complete and
correct.

Experiments conducted on simulated data and real instantaneous power consumption data
show that our algorithm significantly improves the execution time of an algorithm based on a
non-incremental naïve approach. For both algorithms, the time complexity is exponential with
the size of the sliding windows and beyond exponential with respect to the number of items or
the support threshold. These execution time performance were obtained with a memory usage
close to the one of the naïve approach.

Future work will consider incremental mining of multiple data streams. In particular, the
proposed tree representation of frequent sequences can be extended to design an algorithm
that can extract frequent sequences in multiple itemsets streams and take into account the
repetitions in each stream. Also, a lot research has been done on condensed representations
of patterns e.g. closed patterns. We want to investigate such condensed representations in the
context of incremental mining.

The frequent sequence history built from the stream of itemset proposes a new view on
the stream. It would be insteresting to mine it in order to highlight concept changes. The
adaptation of algorithms for mining interval-based sequences, such as the method proposed
in Guyet and Quiniou (2011), to streams would be a possible solution but constitutes a great
challenge.

References

Achar, A., S. Laxman, and P. S. Sastry (2010). A unified view of automata-based algorithms
for frequent episode discovery. CoRR abs/1007.0690.

Agrawal, R., T. Imielinski, and A. Swami (1993). Mining association rules between sets of
items in large databases. In Proceedings of the ACM SIGMOD Conference on Management
of Data, pp. 207–216.

Ayres, J., J. Flannick, J. Gehrke, and T. Yiu (2002). Sequential pattern mining using a bitmap
representation. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 429–435. ACM.

- 53 -

Incremental mining of frequent sequences

Chang, J. H. and W. S. Lee (2003). Finding recent frequent itemsets adaptively over online data
streams. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 487–492.

Chen, G., X. Wu, and X. Zhu (2005). Sequential pattern mining in multiple streams. In
Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 585–588.

Cheng, H., X. Yan, and J. Han (2004). IncSpan: incremental mining of sequential patterns
in large database. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 527–532.

Ding, B., D. Lo, J. Han, and S.-C. Khoo (2009). Efficient mining of closed repetitive gapped
subsequences from a sequence database. In Proceedings of the 2009 IEEE International
Conference on Data Engineering, pp. 1024–1035.

Ezeife., C. and M. Monwar (2007). A PLWAP-based algorithm for mining frequent sequential
stream patterns. International Journal of Information Technology and Intelligent Comput-
ing 2(1), 89–116.

Frank, A. and A. Asuncion (2010). UCI machine learning repository.
Giannella, C., J. Han, J. Pei, X. Yan, and P. S. Yu (2003). Mining frequent patterns in data

streams at multiple time granularities. In K. S. H. Kargupta, A. Joshi and Y. Yesha (Eds.),
Proceedings of the Next Generation Data Mining Workshop.

Giannella, C., J. Han, J. Pei, X. Yan, and P. S. Yu (2004). Next generation data mining, Chapter
Mining frequent patterns in data streams at multiple time granularities. AAAI/MIT Press.

Guyet, T. and R. Quiniou (2011). Extracting temporal patterns from interval-based sequences.
In Proceedings of International Join Conference on Artificial Intelligence, pp. 1306–1311.

Ho, C.-C., H.-F. Li, F.-F. Kuo, and S.-Y. Lee (2006). Incremental mining of sequential patterns
over a stream sliding window. In IWMESD Workshop at ICDM, pp. 677 –681.

Huang, J.-W., C.-Y. Tseng, J.-C. Ou, and M.-S. Chen (2008). A general model for sequential
pattern mining with a progressive database. IEEE Transactions on Knowledge and Data
Engineering 20(9), 1153 –1167.

Laxman, S., P. S. Sastry, and K. P. Unnikrishnan (2007). A fast algorithm for finding fre-
quent episodes in event streams. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 410–419.

Li, H.-F. and S.-Y. Lee (2009). Mining frequent itemsets over data streams using efficient
window sliding techniques. Journal of Expert Systems with Applications 36(2), 1466–1477.

Lin, J., E. Keogh, S. Lonardi, and B. Chiu (2003). A symbolic representation of time series,
with implications for streaming algorithms. In Proceedings of the Workshop on Research
Issues in Data Mining and Knowledge Discovery.

Lin, J., E. Keogh, S. Lonardi, and P. Patel (2002). Finding motifs in time series. In Proceedings
of the 2nd Workshop on Temporal Data Mining, pp. 53–68.

Lin, M.-Y. and S.-Y. Lee (2004). Incremental update on sequential patterns in large databases
by implicit merging and efficient counting. Journal of Information Systems 29, 385–404.

Manku, G. S. and R. Motwani (2002). Approximate frequency counts over data streams. In
Proceedings of the 28th international conference on Very Large Data Bases, pp. 346–357.

- 54 -

T. Guyet et al.

Mannila, H., H. Toivonen, and A. I. Verkamo (1997). Discovering frequent episodes in event
sequences. Journal of Data Mining and Knowledge Discovery 1(3), 210–215.

Marascu, A.-M. and F. Masseglia (2006). Mining sequential patterns from data streams: a
centroid approach. Journal for Intelligent Information Systems 27, 291–307.

Masseglia, F., F. Cathala, and P. Poncelet (1998). The PSP approach for mining sequential
patterns. In Proceedings of the Second European Symposium on Principles of Data Mining
and Knowledge Discovery, pp. 176–184.

Masseglia, F., P. Poncelet, and M. Teisseire (2003). Incremental mining of sequential patterns
in large databases. Journal of Data and Knowledge Engineering 46, 97–121.

Méger, N. and C. Rigotti (2004). Constraint-based mining of episode rules and optimal win-
dow sizes. In Proceedings of the 8th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pp. 313–324.

Nguyen, S. N., X. Sun, and M. E. Orlowska (2005). Improvements of IncSpan: Incremen-
tal mining of sequential patterns in large database. In Proceedings of the 9th Pacific-Asia
conference on Advances in Knowledge Discovery and Data Mining, pp. 442–451.

Patnaik, D., N. Ramakrishnan, S. Laxman, and B. Chandramouli (2012). Streaming algorithms
for pattern discovery over dynamically changing event sequences. CoRR abs/1205.4477.

Pei, J., J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu (2004).
Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Transactions
on Knowledge and Data Engineering 16(11), 1424–1440.

Raïssi, C., P. Poncelet, and M.Teisseire (2006). Need for SPEED: Mining sequential pattens
in data streams. In Proceedings of Data Warehousing and Knowledge Discovery.

Srikant, R. and R. Agrawal (1996). Mining sequential patterns: Generalizations and perfor-
mance improvements. In Proceedings of the 5th International Conference on Extending
Database Technology, pp. 3–17.

Tatti, N. and B. Cule (2011). Mining closed episodes with simultaneous events. In Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 1172–1180.

Tatti, N. and B. Cule (2012). Mining closed strict episodes. Data Mining and Knowledge
Discovery 25(1), 34–66.

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Journal of
Machine Learning 42(1/2), 31–60.

Résumé
We introduce the problem of mining frequent sequences of itemsets in a window sliding

over a stream of itemsets. To address this problem, we present a complete and correct incre-
mental algorithm based on a representation of frequent sequences inspired by the PSP algo-
rithm and a method for counting the minimal occurrences of a sequence. The experiments were
conducted on simulated data and on real instantaneous power consumption data. The results
show that our incremental algorithm improves significantly the computation time compared to
a non-incremental approach.

- 55 -

Index

A

Azzag, Hanane . 21

C

Chivukula, Aneesh 2

D

Doan, Nhat-Quang 21

G

Guyet, Thomas . 38

L

Lamirel, Jean-Charles2
Lebbah, Mustapha.21

M

Marascu, Alice .1

Q

Quiniou, René . 38

- 57 -

	Conférence invitée
	Similarity Matching in Streaming Time Series Alice Marascu
	Articles sélectionnés
	Incremental Novelty Detection applied to Diachronic Scientometrics Aneesh Sreevallabh Chivukula, Jean-Charles Lamirel
	Growing Self-organizing Trees for Knowledge Discovery from Data Nhat-Quang Doan, Hanane Azzag, Mustapha Lebbah
	Incremental mining of frequent sequences from a window sliding over a stream of itemsets Thomas Guyet, René Quiniou

	Index des auteurs

