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Disclaimer

“Essentially, all models are wrong but some are useful”

George E.P. Box
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Introduction

The analysis of networks:
� is a recent but increasingly important field in statistical learning,
� with applications in domains ranging from biology to history:

� biology: analysis of gene regulation processes,
� social sciences: analysis of political blogs,
� history: visualization of medieval social networks.

Two main problems are currently well addressed:
� visualization of the networks,
� clustering of the network nodes.

Network comparison:
� is a still emerging problem is statistical learning,
� which is mainly addressed using graph structure comparison,
� but limited to binary networks.
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Introduction

Figure: Clustering of network nodes: communities (left) vs. structures with hubs
(right).

5



Introduction

Key works in probabilistic models:
� stochastic block model (SBM) by Nowicki and Snijders (2001),
� latent space model by Hoff, Handcock and Raftery (2002),
� latent cluster model by Handcock, Raftery and Tantrum (2007),
� mixed membership SBM (MMSBM) by Airoldi et al. (2008),
� mixture of experts for LCM by Gormley and Murphy (2010),
� MMSBM for dynamic networks by Xing et al. (2010),
� overlapping SBM (OSBM) by Latouche et al. (2011).

A good overview is given in:
� M. Salter-Townshend, A. White, I. Gollini and T. B. Murphy, “Review of

Statistical Network Analysis: Models, Algorithms, and Software”,
Statistical Analysis and Data Mining, Vol. 5(4), pp. 243–264, 2012.
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Introduction: a historical problem

Our colleagues from the LAMOP team were interested in answering the
following question:

Was the Church organized in the same way
within the different kingdoms in Merovingian Gaul?

To this end, they have build a relational database:
� from written acts of ecclesiastical councils that took place in Gaul during

the 6th century (480-614),
� those acts report who attended (bishops, kings, dukes, priests, monks, ...)

and what questions (regarding Church, faith, ...) were discussed,
� they also allowed to characterize the type of relationship between the

individuals,
� it took 18 months to build the database.
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Introduction: a historical problem

The database contains:
� 1331 individuals (mostly clergymen) who

participated to ecclesiastical councils in
Gaul between 480 and 614,

� 4 types of relationships between
individuals have been identified (positive,
negative, variable or neutral),

� each individual belongs to one of the 5
regions of Gaul:
� 3 kingdoms: Austrasia, Burgundy and

Neustria,
� 2 provinces: Aquitaine and Provence.

� additional information is also available: social positions, family
relationships, birth and death dates, hold offices, councils dates, ...
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Introduction: a historical problem

       Neustria               Provence      Unknown         Aquitaine         Austrasia              Burgundy

Figure: Adjacency matrix of the ecclesiastical network (sorted by regions).9
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The stochastic block model (SBM)
The SBM (Nowicki and Snijders, 2001) model assumes that the network
(represented by its adjacency matrix X) is generated as follows:

� each node i is associated with an (unobserved) group among K
according to:‌

Zi ∼M(α),

where α ∈ [0, 1]K and
∑K
k=1 αk = 1,

� then, each edge Xij is drawn according to:

Xij |ZikZjl = 1 ∼ B(πkl),

where πkl ∈ [0, 1].

� this model is therefore a mixture model:

Xij ∼
K∑
k=1

K∑
`=1

αkα`B(πkl).
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The stochastic block model (SBM)

1 2

3

⇡••

4 5

6 7

⇡••

8

9

⇡••

⇡••
⇡••

⇡••

Table: A SBM network.
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The stochastic block model (SBM)

Inference of the SBM model (maximum likelihood):
� log-likelihood:

log p(X|α,Π) = log

{∑
Z

p(X,Z|α,Π)

}
,

↪→ KN terms!

� Expectation Maximization (EM) algorithm requires the knowledge of
p(Z|X,α,Π),

� Problem: p(Z|X,α,Π) is not tractable (no conditional independence)!

Solutions:
� Variational EM (Daudin et al., 2008) + ICL (Biernacki et al., 2003),
� Variational Bayes EM + ILvb criterion (Latouche et al., 2012).
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The random subgraph model (RSM)

Before the maths, an example of an RSM network:

Figure: Example of an RSM network.

We observe:
� the partition of the network into
S = 2 subgraphs (node form),

� the presence Aij of directed edges
between the N nodes,

� the type Xij ∈ {1, ..., C} of the
edges (C = 3, edge color).

We search:
� a partition of the node into K = 3

groups (node color),
� which overlap with the partition

into subgraphs.
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The random subgraph model (RSM)

The network (represented by its adjacency matrix X) is assumed to be
generated as follows:
� the presence of an edge between nodes i and j is such that:

Aij ∼ B(γsisj )

where si ∈ {1, ..., S} indicates the (observed) subgraph of node i,

� each node i is as well associated with an (unobserved) group among K
according to:

Zi ∼M(αsi)

where αs ∈ [0, 1]K and
∑K
k=1 αsk = 1,

� each edge Xij can be finally of C different (observed) types and such
that:

Xij |AijZikZjl = 1 ∼M(Πkl)

where Πkl ∈ [0, 1]C and
∑C
c=1 Πklc = 1.
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The random subgraph model (RSM)

1 2

4 5

3
�22,⇡••

�22,⇡••

8

76

9

�##,⇡••

�##,⇡••

�#2,⇡••

Table: A RSM network.

17



The random subgraph model (RSM)

XijΠ

ZiZj

α

XijΠ

ZiZj Aij γ

α

Xij

P

(a) SBM (b) RSM

Figure: SBM model vs. RSM model.
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The random subgraph model (RSM)

Remark 1:
� the RSM model separates the roles of the known partition and the latent

clusters,
� this was motivated by historical assumptions on the creation of

relationships during the 6th century,
� indeed, the possibilities of connection were preponderant over the type of

connection and mainly dependent on the geography.

Remark 2:
� an alternative approach would consist in allowing Xij to directly depend

on both the latent clusters and the partition,
� however, this would dramatically increase the number of model

parameters (K2S2(C + 1) + SK instead of S2 +K2C + SK),
� if S = 6, K = 6 and C = 4, then the alternative approach has 6 516

parameters while RSM has only 216.
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The random subgraph model (RSM)

We consider a Bayesian framework:
� the previous model is fully defined by its joint distribution:

p(X,A,Z|α, γ,Π) = p(X|A,Z,Π)p(A|γ)p(Z|α),

� which we complete with conjuguate prior distributions for model
parameters:
� the prior distribution for α is:

p(γrs) = Beta(ars, brs),

� the prior distribution for γ is:

p(αs) = Dir(χs),

� the prior distribution for Π is:

p(Πkl) = Dir(Ξkl).
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The random subgraph model (RSM)

Xij Π

ZiZj Aij

γα

Xij

Pχ a, b

Ξ

Figure: A graphical representation of the RSM model.
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Model inference through a VBEM algorithm

Due to the Bayesian framework introduces above:
� we aim at estimating the posterior distribution p(Z,α, γ,Π|X,A), which

in turn will allow us to compute MAP estimates of Z and (α, γ,Π),
� as expected, this distribution is not tractable and approximate inference

procedures are required,
� the use of MCMC methods is obviously an option but MCMC methods

have a poor scaling with sample sizes.

We chose to use variational approaches:
� because they allow to deal with large networks (N > 1000),
� recent theoretical results (Celisse et al., 2012; Mariadassou and Matias,

2013) gave new insights about convergence properties of variational
approaches in this context.
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The VBEM algorithm
We aim at estimating the posterior distribution p(Z, θ|X):
� we use the decomposition of the marginal log-likelihood:

log(p(X)) = L(q(Z, θ)) +KL(q(Z, θ)||p(Z, θ|X)),

where:
� L(q(Z, θ)) =

∑
Z

∫
θ
q(Z, θ) log(p(X,Z, θ)/q(Z, θ))dθ is a lower bound of

the log-likelihood,
� KL(q(Z, θ)||p(Z, θ|X)) = −

∑
Z

∫
θ
q(Z, θ) log(p(Z, θ|X)/q(Z, θ))dθ is the

KL divergence between q(Z, θ) and p(Z, θ|X).

� we also assume that q factorizes over Z and θ:

q(Z, θ) =
∏
i

qi(Zi)qθ(θ).

The VBEM algorithm:
� VB-E step: qθ(θ) is fixed and L is maximized over the qi
⇒ log q∗j (Zj) = Ei 6=j,θ[log p(X,Z, θ)] + c

� VB-M step: all qi(Zi) are now fixed and L is maximized over qθ
⇒ log q∗θ(θ) = EZ [log p(X,Z, θ)] + c
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Initialization and choice of K

Initialization of the VBEM algorithm:
� the VBEM is known to be sensitive to its initialization,
� we propose a strategy based on several k-means algorithms with a

specific distance:

d(i, j) =

N∑
h=1

δ(Xih 6= Xjh)AihAjh +

N∑
h=1

δ(Xhi 6= Xhj)AhiAhj .

Choice of the number K of groups:
� once the VBEM algorithm has converged, the lower bound L(q) is a

good approximation of the integrated log-likelihood log p(X,A),
� we thus can use L(q) as a model selection criterion for choosing K,
� if computed right after the M step,

L(q) =

S∑
r,s

log(
B(ars, brs)

B(a0rs, b
0
rs)

) +

S∑
s=1

log(
C(χs)

C(χ0
s)

) +

K∑
k,l

log(
C(Ξkl)

C(Ξ0
kl)

)−
N∑

i=1

K∑
k=1

τik log(τik).
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The ecclesiastical network

The data:
� 1331 individuals (mostly clergymen) who

participated to ecclesiastical councils in
Gaul between 480 and 614,

� 4 types of relationships between
individuals have been identified (positive,
negative, variable or neutral),

� each individual belongs to one of the 5
regions (3 kingdoms et 2 provinces).

Our modeling allows a multi-level analysis:
� Z allows to characterize the found clusters through social positions of the

individuals,
� parameter Π describes the relations between the found clusters,
� parameter γ describes the connections between the subgraphs,
� parameter α describes the cluster repartition in the subgraphs.
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RSM results: the latent clusters

Bishop Priest Abbot Earl Duke Monk Deacon King Queen Archdeacon

Cluster 1

0
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Figure: Characterization of the K = 6 clusters found by RSM.
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RSM results: the latent clusters

The latent clusters from the historical point of view:

� clusters 1 and 3 correspond to local, provincial of diocesan councils,
mostly interested in local issues (ex: council of Arles, 554),

� clusters 2 and 6 correspond to councils dedicated to political questions,
usually convened by a king (ex: Orleans, 511),

� clusters 4 and 5 correspond to aristocratic assemblies, where queens and
duke and earls are present (ex: Orleans, 529).
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RSM results: the relationships between clusters

positive

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

negative

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

Figure: Characterization of the relationships between clusters (parameter Π).
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RSM results: the relationships between clusters

variable

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

neutral

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

cluster 6

Figure: Characterization of the relationships between clusters (parameter Π).
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RSM results: the relationships between clusters

The clusters relationships from the historical point of view:

� positive relations between clusters 3, 5 and 6 mainly corresponds to
personal friendships between bishops (source effect),

� negative and variable relations betweens clusters 4, 5 and 6 report the
conflicts in the hierarchy of the power,

� neutral relations between clusters 1, 3 and 6 were expected because they
deal with different issues (local / political).
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RSM results: the relationships between regions

Neustria Provence Unknown Aquitaine Austrasia Burgundy
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Figure: Characterization of the relationships between the regions (parameter γ in
log scale).
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RSM results: comparison of the regions
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Figure: Characterization of regions through cluster repartition (parameter α).
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RSM results: comparison of the regions
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Figure: PCA for compositional data on the parameter α.
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Dynamic networks: a problem in geography

Clustering of dynamic networks is an increasing problem, since most of the
observed networks are in fact not static.

As an example, we will analyze a maritime flow network from 1870 to 2008:

Europe−Atlantic
Asia−Pacific
Middle East & Indian Ocean
Med & Black Sea

1890 1946 1965 2008
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Dynamic networks: a problem in geography

Network in 1890 Network in 2008

Figure: Adjacency matrix of the maritime flow network organized by subgraph in
1890 and 2008.
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Only a few works in the literature

To date, only a few models have been proposed to deal with this kind of
networks:
� dynamic MMSBM by Xing et al.,
� dynamic SBM by Yang et al.,
� another dynamic SBM by Xu et al.,
� dynamic LPCM by Sarkar et al.,
� and a few others...

Here, we extend the RSM model (Jernite et al., 2012) to be able to deal
with dynamic networks with categorical edges and a known partition into
subgraphs.
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The dRSM model: the model at time t

At time t, the network (represented by its adjacency matrix X(t)) is assumed
to be generated as follows:

� each node i is associated with an (unobserved) group among K
according to:

Z
(t)
i ∼M(α(t)

si )

where α(t)
s ∈ [0, 1]K and

∑K
k=1 α

(t)
sk = 1,

� each edge X(t)
ij can have C + 1 different (observed) types (0 denotes the

absence of an edge) and such that:

X
(t)
ij |Z

(t)
ik Z

(t)
jl = 1 ∼M(Πkl)

where Πkl ∈ [0, 1]C+1 and
∑C
c=0 Πklc = 1.
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The dRSM model: modeling the evolution

We rely on a state space model to take into account the dynamic of the
network:
� we introduce the latent variable γ(t)s to link the group proportions over

the time:

α
(t)
sk =

exp(γ
(t)
sk )

C(γ
(t)
s )

,

where γ(t)sK = 0 and C(γ
(t)
s ) =

∑K
`=1 exp(γ

(t)
s` ),

� γ
(t)
s\K is further assumed to be distributed according to a normal

distribution with mean Bν(t) and covariance matrix Σ,

γ(t)s ∼ N (Bν(t),Σ).
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The dRSM model: modeling the evolution

The reminder of the modeling involves a classical state space model:
� νt depends on νt−1 such that:

ν(t) = Aν(t−1) + ω(t),

where:
� ω(t) ∼ N (0,Φ),
� ν1 = µ0 + u,
� u ∼ N (0, v0).

To avoid model identifiability issues, we fixe A, B and v0 to be equal to the
identity matrix IK−1 and all components of µ0 to zero in the numerical
experiments.
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The dRSM model: modeling the evolution

X
(t)
ij Π

Z
(t)
i

Z
(t)
j

Pγ(t)B,Σ

ν(t)µ0, A,Φ, ν0

Fig. Graphical representation of the dRSM model.
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Analysis of the maritime flow network: The data

We considered the data from Ducruet (2013):

� data from Lloyd’s List (Voyage Record) covering the period 1890-2008 at
17 time points,

� huge work to extract from paper versions and complement the lacks
(capacity, ...),

� the data contains 176 095 vessels between 4472 ports but we had to
reduce to the 286 ports always existing,

� 4 types of relations between ports are considered: liquid bulk, passengers,
containers and solid bulk.

43



Analysis of the maritime flow network: The data

Figure: Map of the ports and their maritime basin.
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Analysis of the maritime flow network: The results
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Figure: Choice of the number of groups according to BIC.
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Analysis of the maritime flow network: The results
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Analysis of the maritime flow network: The results
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Conclusion
Our contributions:
� the RSM model takes into account an existing partition into subgraphs,
� this modeling allows afterward a comparison of the subgraphs,
� the dRSM model allows to deal with evolving networks.

Software:

package Rambo for the R software is available on the CRAN

Publication:
C. Bouveyron, L. Jegou, Y. Jernite, S. Lamassé, P. Latouche & P. Rivera, The
random subgraph model for the analysis of an ecclesiastical network in merovingian
Gaul, The Annals of Applied Statistics, 8(1), 377-405, 2014.

C. Bouveyron, P. Latouche and R. Zreik, The Dynamic Random Subgraph Model for
the Clustering of Evolving Networks, Preprint HAL n°01122393, Laboratoire MAP5,
Université Paris Descartes, 2015.

C. Bouveyron, C. Ducruet, P. Latouche and R. Zreik, Cluster Identification in
Maritime Flows with Stochastic Methods, in Maritime Networks: Spatial Structures
and Time Dynamics, Routledge, 2015.
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