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Temporal Graphs

A variable notion...
I a time series of graphs? (e.g., one per day)
I transient nodes with permanent connections
I edges with duration
I etc.

with a unifying model (Casteigts et al. [2012])

I a set of vertices V and a set of edges E
I a time domain T
I a presence function ρ from E × T to {0,1}
I a latency function ζ from E × T to R+
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Temporal Interaction Data

Time stamped interactions between actors
I X sends a SMS to Y at time t
I X sends an email to Y at time t
I X likes/answers to Y ’s post at time t
I and also: citations (patents, articles), web links, tweets, moving

objects, etc.

Temporal Interaction Data
I a set of sources S (emitters)
I a set of destinations D (receivers)
I a temporal interaction data set E = (sn,dn, tn)1≤n≤m with sn ∈ S,

dn ∈ D and tn ∈ R (time stamps)



Time-Varying Graph

Graph point of view
I interactions as edges in a directed graph G = (V ,E ′)
I vertices V = S ∪ D, edges E ′ ' E

E ′ = {(s,d) ∈ V 2 | ∃t (s,d , t) ∈ E}

I presence function ρ from V 2 × R to {0,1}: ρ(s,d , t) = 1 if and
only if (s,d , t) ∈ E

Complex time-varying graphs
I directed graph (possibly bipartite)
I multiple edges: s can send several messages to d (at different

times)
I no “snapshot” assumption: time stamps are continuous



Example

S = {1,2,3} D = {a,b, c,d ,e}

source dest. time
2 a 4
2 d 5
2 d 7
1 b 8
1 e 10
2 b 14
3 a 20

1 2 3

a b c d e

 

10

5 7
4

8

20

14
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Static Graph Analysis

Role based analysis
I Groups of “equivalent” actors (roles)
I Structure based equivalence: interacting in the same way with

other (groups of) actors
I Strongly related to graph clustering
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Static Graph Analysis

Role based analysis
I Groups of “equivalent” actors (roles)
I Structure based equivalence: interacting in the same way with

other (groups of) actors
I Strongly related to graph clustering

Notable patterns
I community: internal connections and no external ones
I bipartite: external connections and no internal ones
I hub: very high degree vertex



Block Models

Principles
I Each actor (vertex) has a hidden role chosen among a finite set of

possibilities (classes)
I The connectivity is explained only by the hidden roles

Stochastic Block Model
I K classes (roles)
I Zi ∈ {1, . . . ,K} role of vertex/actor i
I conditional independence of connections

P(X |Z ) =
∏

i 6=j P(Xij |Zi ,Zj) where Xij = 1 when i and j are
connected

I P(Xij = 1|Zi = k ,Zj = l) = γkl connection probability between
roles k and l

I given X , we infer Z (clustering) and γ
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Temporal Models

Snapshot Assumption
I Time series of static graphs: G1,G2, . . . ,GT

I Each graph covers a time interval
I Nothing happens (on a temporal point of view) during a time

interval

A Naive Analysis...
I Analyze each graph Gk independently
I Hope for the results to show some consistency

Fails
1. Fitting a model is a complex combinatorial optimization problem:

results are unstable
2. Intrinsic redundancy: what is evolving?
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What is Evolving?

Evolving clusters, fixed patterns

Day 1 Day 2
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What is Evolving?

Fixed clustering, evolving patterns

Day 1 Day 2

Community bipartite



Possible solutions

Soft Constraints
I Clusters (roles) at time t + 1 are influenced by clusters at time t :

Markov chain models for instance
I Constrained evolution of connection probabilities (e.g. friendship

increases with the number of encounters)

Hard Constraints
I Fixed patterns: modularity
I Fixed clustering

Lifting the Snapshot Constraint
I Continuous time models
I Change detection point of view: find intervals on which the

connectivity pattern is stable
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Temporal Block Models

Main principle
I S: source vertices, D: destination vertices
I kS source roles, kD destination roles and kT time intervals
I µijl is the number of interactions between sources with role i and

destinations with role j that take place during the time interval l
I given the roles and the time intervals, the µijl are independent

Non parametric approach
I we do not use a parametric distribution for µijl

I µijl becomes a parameter in (discrete) generative model
I implies a rank based representation of the time stamps



A Generative Model for Temporal Interaction Data

Parameters
I three partitions CS, CD and CT

I an edge/interaction count 3D table µ: µijl is the number of
interactions between sources in cS

i and destinations in cD
j that

take place during cT
l

I out-degrees δS of sources and in-degrees δD of destinations
I consistency constraints

Over parametrized
I allows switching from a clustering point of view to a numerical one
I ease the design of the generative model
I ease the design of a prior distribution



An example

I S = {1, . . . ,6}, D = {a,b, . . . ,h}.
I CS = {{1,2,3}, {4,5}, {6}}, CD = {{a,b, c,d ,e}, {f ,g,h}}
I CT = {{1, . . . ,12}, {13, . . . ,33}, {34, . . . ,50}}
I µ

cD
1 cD

2
cS

1 5 1
cS

2 2 0
cS

3 4 0
cT

1

cD
1 cD

2
cS

1 2 2
cS

2 2 5
cS

3 5 5
cT

2

cD
1 cD

2
cS

1 0 0
cS

2 1 0
cS

3 1 15
cT

3
I degrees

s 1 2 3 4 5 6
δS

s 3 6 1 2 8 30
d a b c d e f g h
δD

d 3 6 2 6 5 13 8 7



Generation process

Principles
I hierarchical model
I independence inside each level
I uniform distribution for each independent part

The distribution
Generating E = (sn,dn, tn)1≤n≤ν from a parameter list (with
ν =

∑
ijl µijl )

1. assign each (sn,dn, tn) to a tri-cluster cS
i × cS

j × cS
l while fulfilling

µ constraints
2. independently on each variable (S, D and T ), assign sn, dn and tn

based on the tri-cluster constraints, on δD and on δS



A MAP approach

Generative model 101
I chose probability distribution over set of objects, with a parameter

“vector”M
I quality measure forM given an object E , the likelihood
L(M) = P(E |M)

Maximum A Posteriori
I P(M|E) = P(E|M)P(M)

P(E)

I we use a MAP (maximum a posteriori) approach

M∗ = arg max
M

P(E |M)P(M)

I M can include what would be meta-parameters in other
approaches (the number of clusters, for instance)

I strongly related to regularization approaches
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MAP implementation

Difficult Combinatorial Optimization Problem
I large parameter space
I discrete and complex criterion

Simple Heuristic
I greedy block merging

I starts with the most refined triclustering
I choose the best merge at each step

I specific data structures: O(m) operations for evaluating a
parameter list and O(m

√
m log m) for the full merging operation

Extensions
I local improvements (vertex swapping for instance)
I greedy merging starting from semi-random partitions



Experiments

Synthetic Data
I block structure

[0,20[ [20,30[ [30,60[ [60,100]
I cluster sizes

cluster 1 2 3 4
size 5 5 10 20

I edges are built according to this model, with 30 % of random
rewiring

I results as a function of m, the number of edges



Results
1. With the data just described

2. When the temporal structured is removed
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Real Data

Phone Calls in Ivory Coast
I Cellular phone calls to Ivory Coast from other countries
I Emitters: countries (∼ 190)
I Receivers: cellular antenna (1216 antennas)
I minute level timestamps
I two months of communication: roughly 13 millions of incoming

calls

Raw results
I very fine clustering: 286 clusters of antennas, 33 clusters of

countries and 10 temporal intervals
I greedy simplification: 12 clusters of antennas, 11 clusters of

countries and 6 temporal intervals



Burkina Faso
Burkina Faso

I neighbor of Ivory Coast
I provider of the first group of non Ivorian inhabitants of the Ivory

Coast (roughly 15 % of the population)
I largest emitter of phone calls to Ivory Coast
I found isolated in a cluster of countries (even after simplification)

A typical result

Mutual information between
antenna clusters and time in-
terval in the Burkina’s cluster



Geographical view

[10h;17h25] [17h25;20h52[



Real Data

Bike sharing in London
I classical bike share system
I 488 stations
I 4.8 millions of journey from 7 months

Analysis
I stationary point of view: ride hour (minute resolution)
I departure time
I on a standard PC, 50 minutes of calculation leads to:

I 296 source clusters, 281 destination clusters
I 5 time intervals



Analysis

Time intervals

Intervals

 7:06  9:27 15:25 18:16  4:12  7:05

Too many clusters
I density estimation, not clustering
I bid data⇒ fine patterns
I greedy simplification by cluster merging

I uses the same algorithm
I automatic balance between merges



Simplified triclustering

Only 20 clusters of stations but still 5 time intervals



Comparisons



Conclusion

Summary
I MODL based temporal graph block modeling

I complex structure detection
I adapted to large volumes of data (in term of the number of

interaction)
I automatic time segmentation
I no shown here: a full set of associated exploratory tools

Perspectives
I extensive comparisons with other techniques (already done for

static graphs)
I how to handle weighted graphs?
I in general, the obtained models are too fine grained. Can we do

better than greedy coarsening?
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Generation process

Principles
I hierarchical model
I independence inside each level
I uniform distribution for each independent part

The distribution
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An example

I S = {1, . . . ,6}, D = {a,b, . . . ,h}.
I CS = {{1,2,3}, {4,5}, {6}}, CD = {{a,b, c,d ,e}, {f ,g,h}}
I CT = {{1, . . . ,12}, {13, . . . ,33}, {34, . . . ,50}}
I µ

cD
1 cD

2
cS

1 5 1
cS

2 2 0
cS

3 4 0
cT

1

cD
1 cD

2
cS

1 2 2
cS

2 2 5
cS

3 5 5
cT

2

cD
1 cD

2
cS

1 0 0
cS

2 1 0
cS

3 1 15
cT

3
I degrees

s 1 2 3 4 5 6
δS

s 3 6 1 2 8 30
d a b c d e f g h
δD

d 3 6 2 6 5 13 8 7



An example (continued)

I here ν = 50
I a possible edge ids assignment:

cD
1 cD

2
cS

1 {1, . . . , 5} {8}
cS

2 {11, 12} ∅
cS

3 {21, . . . , 24} ∅
cT

1

cD
1 cD

2
cS

1 {6, 7} {9, 10}
cS

2 {13, 14} {16, . . . , 20}
cS

3 {25, . . . , 29} {31, . . . , 35}
cT

2

cD
1 cD

2
cS

1 ∅ ∅
cS

2 {15} ∅
cS

3 {30} {36, . . . , 50}
cT

3

I then the sources in cS
1 are sources of the following edges

{1, . . . ,5} ∪ {8} ∪ {6,7} ∪ {9,10} = {1, . . . ,10}.

I a δS compatible assignment is

interaction 1 2 3 4 5 6 7 8 9 10
source 2 2 1 2 1 3 2 1 2 2



An example (continued)

I Similarly, entities in cD
1 are the destination entity for the following

edges

{1, . . . , 5} ∪ {6, 7} ∪ {11, 12} ∪ {13, 14} ∪ {15} ∪ {21, . . . , 24} ∪ {25, . . . , 29} ∪ {30},

which can be obtained using the following assignment

interaction 1 2 3 4 5 6 7 11 12 13 14 15
destination d d e a b a b e d d b b

interaction 21 22 23 24 25 26 27 28 29 30
destination b d a e c d e e b c

I for time stamp ranks, a possible assignment for cT
1 is

interaction 1 2 3 4 5 8 11 12 21 22 23 24
time stamp rank 5 7 10 4 8 2 9 6 1 3 12 11



An example (continued)

Final data set

interaction source destination time stamp rank
1 2 d 5
2 2 d 7
3 1 e 10
4 2 a 4
5 1 b 8
6 3 a 20
7 2 b 14
...

...
...

...
50 6 f 43



Likelihood function

Compatibility
Consider E = (sn,dn, tn)1≤n≤m andM = (CS,CD,CT ,µ, δS, δD), then
L(M|E) 6= 0 if and only if

1. m =
∑

ijl µijl ;

2. for all s ∈ S, δS
s = |{n ∈ {1, . . . ,m}|sn = s}|;

3. for all d ∈ D, δD
d = |{n ∈ {1, . . . ,m}|dn = d}|;

4. for all i ∈ {1, . . . , kS}, j ∈ {1, . . . , kD} and l ∈ {1, . . . , kT},

µijl =
∣∣∣{{n ∈ {1, . . . ,m}|sn ∈ cS

i ,dn ∈ cD
j , tn ∈ cT

l

}∣∣∣ .
E andM are said to be compatible.



Likelihood function

Formula
IfM and E are compatible

L(M|E) =

(∏kS
i=1
∏kD

j=1
∏kT

l=1 µijl !
) (∏

s∈S δ
S
s !
) (∏

d∈D δ
D
d !
)

ν!
(∏kS

i=1 µi..!
)(∏kD

j=1 µ.j.!
)(∏kT

l=1 µ..l !
) .

Can be rewritten to depend only on CS, CD, CT and E .

Interpretation
I the likelihood increases with the number of empty tri-clusters

(µijl = 0)
I the likelihood decreases when clusters are imbalanced (edge

wise)



The MAP Criterion

− log P(E |M)P(M) = log |S|+ log |D|+ log m + logB(|S|, kS) + logB(|D|, kD)︸ ︷︷ ︸
partitions

+ log

(
m + kSkDkT − 1

kSkDkT − 1

)
︸ ︷︷ ︸

number of edges

+

kS∑
i=1

log

(
µi.. + |cS

i | − 1
|cS

i | − 1

)
︸ ︷︷ ︸

degree in cS
i

+

kD∑
j=1

log

(
µ.j. + |cD

j | − 1
|cD

j | − 1

)
︸ ︷︷ ︸

degree in cD
j

+ log(m!)−
∑
i,j,l

log(µijl !)︸ ︷︷ ︸
edges

+

kS∑
i=1

logµi..!−
∑
s∈S

log δS
s !︸ ︷︷ ︸

edges in cS
i

+

kD∑
j=1

logµ.j.!−
∑
d∈D

log δD
d !︸ ︷︷ ︸

edges in cD
j

+

kT∑
l=1

logµ..l !︸ ︷︷ ︸
time
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