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with a unifying model (Casteigts et al. [2012])

» a set of vertices V and a set of edges E

» atime domain T

» a presence function p from E x 7 to {0,1}
» alatency function ¢ from E x T to R*



Temporal Interaction Data

Time stamped interactions between actors

» X sendsaSMSto Y attimet
» X sends an email to Y attime t
» X likes/answers to Y’s post at time ¢

» and also: citations (patents, articles), web links, tweets, moving
objects, etc.

Temporal Interaction Data

» a set of sources S (emitters)
» a set of destinations D (receivers)

» atemporal interaction data set E = (sp, dp, th)1<n<m With s, € S,
d, € Dand t, € R (time stamps)



Time-Varying Graph

Graph point of view
» interactions as edges in a directed graph G = (V, E’)
» vertices V=SUD, edges E' ~ E
E'={(s,d) e V?|3t(s,d,t) € E}
» presence function p from V2 x Rto {0,1}: p(s,d,t) = 1 if and
only if (s,d,t) e E
Complex time-varying graphs

» directed graph (possibly bipartite)

» multiple edges: s can send several messages to d (at different
times)

» no “snapshot” assumption: time stamps are continuous



Example

source dest.

82{1’273} D:{a7bﬁc7d’e}

time

WMN==MNDMNN

VDO DT AQ D

4
5
7
8
10
14
20



Outline

Introduction

Static Graph Analysis

Temporal Extensions

Proposed Model

Experiments



Static Graph Analysis

Role based analysis

» Groups of “equivalent” actors (roles)

» Structure based equivalence: interacting in the same way with
other (groups of) actors

» Strongly related to graph clustering



Static Graph Analysis

Role based analysis

» Groups of “equivalent” actors (roles)

» Structure based equivalence: interacting in the same way with
other (groups of) actors

» Strongly related to graph clustering



Static Graph Analysis

Role based analysis

» Groups of “equivalent” actors (roles)

» Structure based equivalence: interacting in the same way with
other (groups of) actors

» Strongly related to graph clustering



Static Graph Analysis

Role based analysis

» Groups of “equivalent” actors (roles)

» Structure based equivalence: interacting in the same way with
other (groups of) actors

» Strongly related to graph clustering

Notable patterns

» community: internal connections and no external ones
» bipartite: external connections and no internal ones
» hub: very high degree vertex



Block Models

Principles
» Each actor (vertex) has a hidden role chosen among a finite set of
possibilities (classes)
» The connectivity is explained only by the hidden roles

Stochastic Block Model

» K classes (roles)
» Z € {1,...,K} role of vertex/actor i

» conditional independence of connections
P(X|Z2) = [1; P(Xj|Zi, Z) where Xj; = 1 when j and j are
connected

» P(Xj =1|Z = k, Z; = I) = v connection probability between
roles k and /

» given X, we infer Z (clustering) and ~
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Temporal Models

Snapshot Assumption

» Time series of static graphs: Gy, Go, ..., Gr
» Each graph covers a time interval
» Nothing happens (on a temporal point of view) during a time

interval
A Naive Analysis...

» Analyze each graph Gk independently
» Hope for the results to show some consistency



Temporal Models

Snapshot Assumption

» Time series of static graphs: Gy, Go, ..., Gr
» Each graph covers a time interval

» Nothing happens (on a temporal point of view) during a time
interval

A Naive Analysis...

» Analyze each graph Gk independently
» Hope for the results to show some consistency

Fails

1. Fitting a model is a complex combinatorial optimization problem:
results are unstable

2. Intrinsic redundancy: what is evolving?



What is Evolving?

Evolving clusters, fixed patterns
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What is Evolving?

Fixed clustering, evolving patterns
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Possible solutions

Soft Constraints

» Clusters (roles) at time t + 1 are influenced by clusters at time t:
Markov chain models for instance

» Constrained evolution of connection probabilities (e.g. friendship
increases with the number of encounters)

Hard Constraints

» Fixed patterns: modularity
» Fixed clustering



Possible solutions

Soft Constraints

» Clusters (roles) at time t + 1 are influenced by clusters at time t:
Markov chain models for instance

» Constrained evolution of connection probabilities (e.g. friendship
increases with the number of encounters)

Hard Constraints

» Fixed patterns: modularity
» Fixed clustering

Lifting the Snapshot Constraint

» Continuous time models

» Change detection point of view: find intervals on which the
connectivity pattern is stable



Temporal Block Models

Main principle
» S: source vertices, D: destination vertices

» Ks source roles, kp destination roles and k7 time intervals

» uj is the number of interactions between sources with role / and
destinations with role j that take place during the time interval /

» given the roles and the time intervals, the y;; are independent

Non parametric approach

» we do not use a parametric distribution for p;
> 17 becomes a parameter in (discrete) generative model
» implies a rank based representation of the time stamps



A Generative Model for Temporal Interaction Data

Parameters

» three partitions CS, CP and C7

» an edge/interaction count 3D table p: pj is the number of
interactions between sources in ¢ and destinations in ch that

take place during ¢/
» out-degrees 6% of sources and in-degrees 6P of destinations
» consistency constraints

Over parametrized

» allows switching from a clustering point of view to a numerical one
» ease the design of the generative model
» ease the design of a prior distribution



An example

» S={1,...,6},D={a,b,..., h}.
» CS={{1,2,3},{4,5},{6}},CP = {{a,b,c,d, e}, {f, g, h}}

» CT={{1,...,12},{13,...

,33},{34,...,50}}

> K
cP | b cP | b cP | cf
c; | 5] 1 c;| 2] 2 c;| 0] 0
cc| 210 c;c| 2|5 cc| 110
cs| 4]0 c;| 5] 5 c; | 1 ]15
cf ¢ e
» degrees
s |12 3|45]|6 dlabcde|f gh
653\361 28\30 s9[3 6 2 6 5/13 8 7



Generation process

Principles

» hierarchical model
» independence inside each level
» uniform distribution for each independent part

The distribution
Generating E = (sp, dp, t1)1<n<, from a parameter list (with
v= Zijl Hiji)
1. assign each (sp, dp, tn) to a tri-cluster ¢ x ch x ¢; while fulfilling
u constraints

2. independently on each variable (S, D and T), assign s, d, and {,
based on the tri-cluster constraints, on §° and on 5°



A MAP approach

Generative model 101
» chose probability distribution over set of objects, with a parameter
“vector” M

» quality measure for M given an object E, the likelihood
L(M) = P(E|M)



A MAP approach

Generative model 101

» chose probability distribution over set of objects, with a parameter
“vector” M

» quality measure for M given an object E, the likelihood
L(M) = P(E|M)

Maximum A Posteriori
P(E|M)P
> P(MIE) = HEZEE
» we use a MAP (maximum a posteriori) approach

M* =arg max P(E|IM)P(M)

» M can include what would be meta-parameters in other
approaches (the number of clusters, for instance)

» strongly related to regularization approaches



MAP implementation

Difficult Combinatorial Optimization Problem

» large parameter space
» discrete and complex criterion

Simple Heuristic

» greedy block merging

» starts with the most refined triclustering
» choose the best merge at each step

» specific data structures: O(m) operations for evaluating a
parameter list and O(m+/mlog m) for the full merging operation

Extensions

» local improvements (vertex swapping for instance)
» greedy merging starting from semi-random partitions



Experiments

Synthetic Data

» block structure

so S 1

[0,20] [20, 30[ [30,60][ [60, 100]
» cluster sizes
cluster 1 2 3 4
size 5 5 10 20

» edges are built according to this model, with 30 % of random
rewiring

» results as a function of m, the number of edges



Results

1. With the data just described
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Results

1. With the data just described
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Real Data

Phone Calls in Ivory Coast

Cellular phone calls to Ivory Coast from other countries
Emitters: countries (~ 190)

Receivers: cellular antenna (1216 antennas)

minute level timestamps

two months of communication: roughly 13 millions of incoming
calls

vV v v v .Yy

Raw results

» very fine clustering: 286 clusters of antennas, 33 clusters of
countries and 10 temporal intervals

» greedy simplification: 12 clusters of antennas, 11 clusters of
countries and 6 temporal intervals



Burkina Faso

Burkina Faso

» neighbor of lvory Coast

» provider of the first group of non Ivorian inhabitants of the Ivory
Coast (roughly 15 % of the population)

» largest emitter of phone calls to Ivory Coast
» found isolated in a cluster of countries (even after simplification)

A typical result
I

Mutual information between
antenna clusters and time in-
terval in the Burkina'’s cluster

on 5R30 7h  10h 17h25  20h52 24F



Geographical view
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Real Data

Bike sharing in London

» classical bike share system
» 488 stations
» 4.8 millions of journey from 7 months

Analysis

» stationary point of view: ride hour (minute resolution)
» departure time
» on a standard PC, 50 minutes of calculation leads to:

» 296 source clusters, 281 destination clusters
» 5 time intervals



Analysis

Time intervals

[ I I I I
7:06 9:27 15:25 18:16 4:12

Intervals

Too many clusters

» density estimation, not clustering

» bid data = fine patterns

» greedy simplification by cluster merging
» uses the same algorithm
» automatic balance between merges

7:05



Simplified triclustering
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Comparisons




Conclusion

Summary

» MODL based temporal graph block modeling
» complex structure detection

» adapted to large volumes of data (in term of the number of
interaction)

» automatic time segmentation
» no shown here: a full set of associated exploratory tools

Perspectives
» extensive comparisons with other techniques (already done for
static graphs)
» how to handle weighted graphs?

» in general, the obtained models are too fine grained. Can we do
better than greedy coarsening?
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Generation process

Principles

» hierarchical model
» independence inside each level
» uniform distribution for each independent part

The distribution
Generating E = (sp, dp, t1)1<n<, from a parameter list (with
v= Zijl Hiji)
1. assign each (sp, dp, tn) to a tri-cluster ¢ x ch x ¢; while fulfilling
u constraints

2. independently on each variable (S, D and T), assign s, d, and {,
based on the tri-cluster constraints, on §° and on 5°



An example

» S={1,...,6},D={a,b,..., h}.
» CS={{1,2,3},{4,5},{6}},CP = {{a,b,c,d, e}, {f, g, h}}

» CT={{1,...,12},{13,...

,33},{34,...,50}}

> K
cP | b cP | b cP | cf
c; | 5] 1 c;| 2] 2 c;| 0] 0
cc| 210 c;c| 2|5 cc| 110
cs| 4]0 c;| 5] 5 c; | 1 ]15
cf ¢ e
» degrees
s |12 3|45]|6 dlabcde|f gh
653\361 28\30 s9[3 6 2 6 5/13 8 7



An example (continued)

» here v =50
» a possible edge ids assignment:
c? c? c? c?
cy {1,...,5} {8} cy {6,7} {9,10}
c {11,12} 0 c {13,14} {16, ...,20}
cs | {21,...,24y | 0 c5 | {25,...,29} | {31,...,35}
cf c
C1D G
c’ 0 0
cs | {15} [
cs | {30} | {36,...,50}

o

» then the sources in 013 are sources of the following edges
{1,...,5yu{8}tu{6,7 U{9,10} ={1,...,10}.

» a 6° compatible assignment is
[ 10 |

[2[8|4]5]6]7]8]9
212131211 2] 2]

interaction | 1
source | 2 |




An example (continued)

» Similarly, entities in cP are the destination entity for the following
edges

{1,..., 5} U{6,7}u{11,12} U {13,14} U {15} U {21,...,24} U {25,..., 29} U {30},
which can be obtained using the following assignment

interaction | |

1]2[3|4|5]6|7[11][12[13][14]15]|
destination | d [ d [ e | a a

5 7
lalbfalb]l el d[d]b]b]

interaction | 21 | 22 | 23 | 24 [ 25 [ 26 | 27 | 28 | 29 | 30 |
destination | b [ d | a| e | c | d|e|e| b]| c]|

|
{

» for time stamp ranks, a possible assignment for ¢/ is

interaction |

1]2] 3 4|58 11 |12]21]22]2
time stamprank | 5 | 7 812 1

| 24
[10]4]8]2]9 6 [1]3] 1

l
[11]

3
2




An example (continued)

Final data set

interaction | source destination time stamp rank

1 2 d 5
2 2 d 7
3 1 e 10
4 2 a 4
5 1 b 8
6 3 a 20
7 2 b 14

50 6 f 43




Likelihood function

Compatibility

Consider E = (S, dy, th)1<n<m and M = (CS,CP,CT u, 8%, 6°), then
L(M|E) # 0if and only if

m:Z/j/H/j/;

forallse S, 65 =|{ne{1,...,m}|s, = s}|;

foralld € D, 6% = |{ne {1,...,m}|d, = d}|;
forallie{1,...,ks},je{1,....,kptand /€ {1,... kr},

el

i = H{ne {1,....m}spec’ drecP the C,TH.

E and M are said to be compatible.



Likelihood function

Formula
If M and E are compatible

H =1 H/ 1ﬂul> (Mses 1) (Mgen 98"
vl (Hi:1 Mi..!) (H, 11 ) (H/ 14 l) .

Can be rewritten to depend only on C°, CP, C” and E.

L(M|E) = (1

Interpretation

» the likelihood increases with the number of empty tri-clusters
(1 = 0)

» the likelihood decreases when clusters are imbalanced (edge
wise)



The MAP Criterion

—log P(E|M)P(M) =log|S| + log |D| + log m + log B(|S|, ks) + log B(| D|, kp)

m+kskpk7'f1
+Iog< kskokr — 1 >+Zlog<

Hi.. +|C ‘_1

number of edges

K
+3i0g (1111 L tog(amy
"\ e o

degree in ch

+ Zlogu, 1= "log 63!

seS

edges in c$

+ Zlogu,l— Zlog(SdH—Zlogu N

deD

edges in C/D



The MAP Criterion

—log P(E|M)P(M)

=log|S| + log |D| + log m + log B(|S], ks) + log B(| D), ko)

partitions
m + kskpkr — 1 Hi.. +|C\—1
| I
+log < kskokr — 1 +Z L e -
number of edges degree in c,S
kp D
.+ 1Pl —1
- 3 (" 1711+ et~ St
=1 |Cj | - i,
degree in ch edges
+ Z|ogul | — Z'Og() !
seS
edges in cs
+ Zlogp, I Zlogéd‘+ZIogu N
deD
_,_/

edges in C/D time



The MAP Criterion

—log P(E|M)P(M)

=log |S| + log |D| + log m + log B(|S|, ks) + log B(|D|, ko)

partitions
m + kskpkr — 1 i.. +IC\—1
| |
+ < kSkaT —1 * Z 9 CS|
number of edges degree in c,s
kp
Jo+le =1
- on ("l st st
j=1 ‘ | ij,!
degree in ch edges
+ Zlogu, =3 "log 63!
seS
edges in cs
+ Zlogu, - Zlogéd'+ZIogu o
deD
€ _,_/
D time

edges in G
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