Merging Classifiers of Different Classification Approaches

Incremental Classification, Concept Drift and Novelty Detection Workshop

Antonina Danylenko ${ }^{1}$ and Welf Löwe ${ }^{1}$

antonina.danylenko@lnu.se

14 December, 2014

[^0]
Agenda

- Introduction;
- Problem, Motivation, Approach;
- Decision Algebra;
- Merge as an Operation of Decision Algebra;
- Merging Classifiers;
- Experiments;
- Conclusions.

Introduction

- Classification is a common problem that arises in different fields of Computer Science (data mining, information storage and retrieval, knowledge management);
- Classification approaches are often tightly coupled to:
- learning strategies: different algorithms are used;
- data structures: represent information in different ways;
- how common problems are addressed: workarounds;
- It is not that easy to select an appropriate classification model for classification problem (be aware of accuracy, robustness, scalability);

Problem and Motivation

- Simple combining of classifiers learned over different data sets of the same problem is not straightforward;
- Current work is done in aggregation and meta-learning:
- combine different classifiers learned over same data set;
- construct single classifier learned on the different variations of the same classification problem;
- as a result - do not take into account that the context can differ.
- Combining classifiers with partly- or completely- disjoint contexts use one single classification approach for base-level classifiers;
- Generality gets lost: incomparable, difficult benchmarking, hard to propagate advances between domains;

Proposed Approach

- Use Decision Algebra that defines classifiers as re-usable black-boxes in terms of so-called decision functions;
- Define a general merge operation over these decisions functions which allows for symbolic computations with classification information captured;
- Show an example of merging classifiers of different classification approaches;
- Show that the merger of classifiers tendentiously becomes more accurate;

Classification Information

- Classification information is a set of decision tuples:

$$
C I=\left\{\left(\vec{a}_{1}, c_{1}\right), \ldots\left(\vec{a}_{n}, c_{n}\right)\right\}
$$

- It is complete if: $\forall \vec{a} \in \vec{A}:(\vec{a}, c) \in C l$;
- It is non-contradictive if: $\forall\left(\vec{a}_{i}, c_{i}\right),\left(\vec{a}_{j}, c_{j}\right) \in C l: \vec{a}_{i}=\vec{a}_{j} \Rightarrow c_{i}=c_{j}$;
- Problem domain $(\mathcal{A}, \mathcal{C})$ of Cl is a superset of $\vec{A} \times C$, that defines the actual classification problem, where $\vec{A} \in \mathcal{A}$;

Decision Function

- Decision Function is a representation of complete and possibly contradictive decision information:

$$
d f: \vec{A} \rightarrow D(C)
$$

maps actual context $\vec{a} \in \vec{A}$ to a (probability) distribution $D(C)$;

- It is a higher order (or curried) function: $d f^{n}: A_{n} \rightarrow\left(A_{n-1} \rightarrow\left(\ldots\left(A_{1} \rightarrow(\rightarrow D(C))\right)\right)\right)$;
- Can be easily represented as a decision tree or decision graph:

$$
d f^{n}=x^{1}\left(d f_{1}^{n-1}, \ldots, d f_{\left|\Lambda_{1}\right|}^{n-1}\right)
$$

where Λ_{i} is a domain of attribute A_{1}

Graph Representation of Decision Function

- Decision function $d f^{2}=x^{1}\left(n a, x^{2}(n a, n a, a, a), x^{2}(n a, n a, a, a), a\right)$

Figur: A tree (left) and graph (right) representation of $d f^{2}$. Each node labeled with n represents a decision term with a selection operator x^{n}; each square leaf node labled with c corresponds to a probability distribution over classes C with c the most probable class.

Decision Algebra

- (DA) is a theoretical framework that is defined as a parameterized specification, with \vec{A} and $D(C)$ as parameters. It provides a general representation of classification information as an abstract classifier;

Operations Over Decision Functions

- Constructor x^{n} :

$$
x^{n}: \underbrace{\Lambda_{1} \times D F\left[\vec{A}^{\prime}, D\right] \times \cdots \times \Lambda_{1} \times D F\left[\vec{A}^{\prime}, D\right]}_{\left|\Lambda_{1}\right| \text { times }} \rightarrow D F[\vec{A}, D]
$$

- Bind binds attribute A_{i} to an attribute value $a \in \Lambda_{i}$:

$$
\begin{array}{ll}
\operatorname{bind}_{A_{i}}: & D F[\vec{A}, D] \times \Lambda_{i} \rightarrow D F\left[\vec{A}^{\prime}, D\right] \\
\operatorname{bind}_{A_{1}}: & \left(x^{n}\left(a_{1}, d f_{1}, \cdots, a_{\left|\Lambda_{1}\right|}, d f_{\left|\Lambda_{1}\right|}\right), a\right) \equiv d f_{i}, \text { if } a=a_{i} \\
\operatorname{bind}_{A_{1}}: & \left(d f^{2}, \text { high }\right)=x^{2}(\text { na, na, a, a) }
\end{array}
$$

- Evert changes the order of attributes in the decision function:

$$
\begin{aligned}
\text { evert }_{A_{i}}: & D F[\vec{A}, D] \rightarrow D F\left[\vec{A}^{\prime}, D\right] \\
\text { evert }_{A_{i}}(d f):= & x\left(a_{1}, \operatorname{bind}_{A_{i}}\left(d f, a_{1}\right), \ldots,\right. \\
& \left.a_{\left|\Lambda_{i}\right|}, \operatorname{bind}_{A_{i}}\left(d f, a_{\left|\Lambda_{i}\right|}\right)\right) \\
\text { evert }_{A_{2}}\left(d f^{2}\right)= & x^{2}\left(x^{1}(n a, n a, n a, a), x^{1}(\text { na, na, na, a }),\right.
\end{aligned}
$$

Merge Operation over Decision Functions

- Merge operator \sqcup_{D} over class distribution $D(C)$;

$$
\begin{aligned}
\sqcup_{D}: & D(C) \times D(C) \rightarrow D(C) \\
d(C) \sqcup_{D} d^{\prime}(C)=\quad & \left\{\left(c, p+p^{\prime}\right) \mid(c, p) \in d(C),\left(c, p^{\prime}\right) \in d^{\prime}(C)\right\}
\end{aligned}
$$

- General merge operation over decision functions:

$$
\sqcup: D F_{1}[\vec{A}, D] \times D F_{2}[\vec{A}, D] \rightarrow D F^{\prime}[\vec{A}, D]
$$

- Merge over constant decision functions $d f_{1}{ }^{0}, d f_{2}{ }^{0} \in D F_{\emptyset}[\{\overrightarrow{0}\}, D]:$

$$
\sqcup\left(d f_{1}^{0}, d f_{2}^{0}\right) \quad:=\quad x^{0}\left(\sqcup_{D}\left(d f_{1}^{0}, d f_{2}^{0}\right)\right)
$$

Scenario One: Same Formal Context

- Prerequisite: The decision functions $d f_{1} \in D F_{1}[\vec{A}, D]$ and $d f_{2} \in D F_{2}\left[\vec{A}^{\prime}, D\right]$ are constructed over different samples of the same problem domain and $\vec{A}=\vec{A}^{\prime}=\Lambda_{1} \times \ldots \times \Lambda_{n}$;

$$
\begin{aligned}
\sqcup\left(d f_{1}, d f_{2}\right):=x^{n}(& a_{1}, \sqcup\left(\operatorname{bind}_{A_{1}}\left(d f_{1}, a_{1}\right), \operatorname{bind}_{A_{1}}\left(d f_{2}, a_{1}\right)\right), \\
& \ldots, \\
& \left.a_{k}, \sqcup\left(\operatorname{bind}_{A_{1}}\left(d f_{1}, a_{k}\right), \operatorname{bind}_{A_{1}}\left(d f_{2}, a_{k}\right)\right)\right)
\end{aligned}
$$

Scenario One: Cont'd

1: if $d f_{1} \in D F_{\emptyset}[\{\overrightarrow{0}\}, D] \wedge d f_{2} \in$ $D F_{\emptyset}[\{\overrightarrow{0}\}, D]$ then return $x\left(\sqcup_{D}\left(d f_{1}, d f_{2}\right)\right)$
end if
4: for all $a \in \Lambda_{1}$ do
5: $\quad d f_{a}$
$\sqcup\left(\operatorname{bind}_{1}\left(d f_{1}, a\right), \operatorname{bind}_{1}\left(d f_{2}, a\right)\right)$
end for
7: return
$x\left(a_{1}, d f_{a_{1}}, \ldots, a_{\left|\Lambda_{1}\right|}, d f_{a_{\left|\Lambda_{1}\right|}}\right)$

(a)

(b)

(c)

(d)

Scenario Two: Disjoint Formal Contexts

- Prerequisite: The decision functions $d f_{1} \in D F_{1}[\vec{A}, D]$ and $d f_{2} \in D F_{2}\left[\vec{A}^{\prime}, D\right]$ are constructed over samples with disjoint formal contexts of the same problem domain: $\vec{A}=\Lambda_{1} \times \ldots \times \Lambda_{n}$ and $\vec{A}^{\prime}=\Lambda_{1}^{\prime} \times \ldots \times \Lambda_{m}^{\prime}$ and attributes $\left\{A_{1}, \ldots, A_{n}\right\} \cap\left\{A_{1}^{\prime}, \ldots, A_{m}^{\prime}\right\}=\emptyset$;

$$
\begin{aligned}
& \sqcup\left(d f_{1}, d f_{2}\right):=x^{n}\left(\quad a_{1}, \sqcup\left(\operatorname{bind}_{A_{1}}\left(d f_{1}, a_{1}\right), \operatorname{bind}_{A_{1}}\left(d f_{2}, a_{1}\right)\right),\right. \\
& \left.a_{k}, \sqcup\left(\operatorname{bind}_{A_{1}}\left(d f_{1}, a_{k}\right), \operatorname{bind}_{A_{1}}\left(d f_{2}, a_{k}\right)\right)\right) \\
& \sqcup\left(d f_{1}^{0}, d f_{2}\right):=\sqcup\left(\quad d f_{2}, d f_{1}^{0}\right)
\end{aligned}
$$

Scenario Two: Cont'd

```
1: if \(d f_{1} \in D F_{\emptyset}[\{\overrightarrow{0}\}, D] \wedge d f_{2} \in\)
    \(D F_{\emptyset}[\{\overrightarrow{0}\}, D]\) then
    return \(\times\left(\sqcup_{D}\left(d f_{1}, d f_{2}\right)\right)\)
    end if
    4: if \(d f_{1} \in D F_{\emptyset}[\{\overrightarrow{0}\}, D]\) then
    5: return \(\left.\sqcup\left(d f_{2}, d f_{1}\right)\right)\)
    6: end if
    7: for all \(a \in \Lambda_{1}\) do
    8: \(\quad d f_{a}\)
        \(\sqcup\left(\operatorname{bind}_{1}\left(d f_{1}, a\right), \operatorname{bind}_{1}\left(d f_{2}, a\right)\right)\)
    : end for
10: return
    \(x\left(a_{1}, d f_{a_{1}}, \ldots, a_{\left|\Lambda_{1}\right|}, d f_{a_{\left|\Lambda_{1}\right|}}\right)\)
```


Scenario Three: General Case

- Prerequisite: For this general case, scenarios one and two are just special cases. The decision functions $d f_{1} \in D F_{1}[\vec{A}, D]$ and $d f_{2} \in D F_{2}\left[\overrightarrow{A^{\prime}}, D\right]$ are constructed over samples with arbitrary formal contexts of the same problem domain: $\vec{A}=\Lambda_{1} \times \ldots \times \Lambda_{n}$ and $\vec{A}^{\prime}=\Lambda_{1}^{\prime} \times \ldots \times \Lambda_{m}^{\prime}$;

$$
\begin{aligned}
& \sqcup\left(d f_{1}, d f_{2}\right):=x^{n}(a_{1}, \sqcup\left(\operatorname{bind}_{A_{1}}\left(d f_{1}, a_{1}\right), \text { bind }_{A_{1}}\left(d f_{2}, a_{1}\right)\right), \\
& \ldots, \\
&\left.a_{k}, \sqcup\left(\operatorname{bind}_{A_{1}}\left(d f_{1}, a_{k}\right), \text { bind }_{A_{1}}\left(d f_{2}, a_{k}\right)\right)\right) \\
& \sqcup\left(d f_{1}^{0}, d f_{2}\right):=\sqcup\left(\begin{array}{ll}
\left.d f_{2}, d f_{1}^{0}\right)
\end{array}\right. \\
& \sqcup\left(d f_{1}, d f_{2}\right):=\sqcup\left(\begin{array}{ll}
& \left.d f_{1}, e v e r t_{A_{1}}\left(d f_{2}\right)\right) \text { iff } A_{1} \in\left\{A_{2}^{\prime}, \ldots, A_{m}^{\prime}\right\}
\end{array}, ~\right.
\end{aligned}
$$

Scenario Three: Cont'd

```
1: if }d\mp@subsup{f}{1}{}\inD\mp@subsup{F}{\emptyset}{}[{\vec{0}},D]\wedged\mp@subsup{f}{2}{}
    DF\emptyset[{\vec{0}},D] then
        return }\times(\mp@subsup{\sqcup}{D}{}(d\mp@subsup{f}{1}{},d\mp@subsup{f}{2}{})
    end if
    if df 
        return }\sqcup(d\mp@subsup{f}{2}{},d\mp@subsup{f}{1}{})
    end if
```


(a)

(c)

(d)

Accuracy of the Merged Decision Functions

- Decision function $d f_{1}$ is more accurate than a decision function $d f_{2}$ iff it more often gives the "right" classification based on some ground truth (which is usually not known);
- oracle ${ }_{\vec{a}}: C \rightarrow \mathbb{R}$ is the accurate classification probability distribution;
- oracle : $\vec{A} \rightarrow D(C)$ is an accurate decision function with $\forall \vec{a} \in \vec{A}$: oracle $(\vec{a})=$ oracle $_{\vec{a}} ;$
- df: $\vec{A} \rightarrow D(C)$ is probably accurate with respect to oracle iff $\forall \vec{a} \in \vec{A}: d f(\vec{a})$ is a random sample of oracle ${ }_{\vec{a}}$;
- Theorem: Let $d f_{1}, \ldots, d f_{n}$ be a series of independently learned decision functions $d f: \vec{A} \rightarrow D(C)$ that are probably accurate with respect to an accurate decision function oracle : $\vec{A} \rightarrow D(C)$. For large n, the merged decision function $d f_{1} \sqcup \ldots \sqcup d f_{n}$ converges in probability to the oracle.

Naïve Bayesian Classifiers

- Constructor:

$$
\begin{aligned}
n b^{n}: & D(C) \times \underbrace{P D_{1}^{1} \times \cdots \times P D_{n}^{1} \times \ldots \times P D_{1}^{k} \times \cdots \times P D_{n}^{k}}_{n \times k \text { conditional probability distributions }} \\
& \rightarrow N B[\vec{A}, D] .
\end{aligned}
$$

- Probability distribution functions: $P D_{i}^{j} \hat{=} P D\left(\Lambda_{i} \mid C=c_{j}\right)$;
- Bind operation: $\operatorname{bind}_{A_{i}}: N B[\vec{A}, D] \times \Lambda_{i} \rightarrow N B\left[\vec{A}^{\prime}, D\right]$

$$
\begin{aligned}
\operatorname{bind}_{A_{i}}\left(d f^{n}, a\right):= & n b^{n-1}\left(\operatorname{cons}_{D}\left(\left(c_{1}, \operatorname{prob}_{c_{1}, i}\left(d f^{n}, a\right)\right), \ldots\left(c_{k}, \operatorname{prob}_{c_{k}, i}\left(d f^{n}, a\right)\right)\right),\right. \\
& p d_{1}\left(d f^{n}, c_{1}\right), \ldots, p d_{i-1}\left(d f^{n}, c_{1}\right), p d_{i+1}\left(d f^{n}, c_{1}\right), \ldots, p d_{n}\left(d f^{n}, c_{1}\right), \\
& \ldots \\
& \left.p d_{1}\left(d f^{n}, c_{k}\right), \ldots, p d_{i-1}\left(d f^{n}, c_{k}\right), p d_{i+1}\left(d f^{n}, c_{k}\right), \ldots, d f_{n}^{n}\left(d f^{n}, c_{k}\right)\right) \\
\operatorname{prob}_{c, i}(d f, a)= & \operatorname{prob}(\operatorname{dist}(d f), c) \cdot \operatorname{prob}\left(p d_{A_{i}}(d f, c), a\right)
\end{aligned}
$$

Bind: Example

Class: Car Acceptability Buying price

Accept	Not accept
0.69	0.31

	high	low
Accept	0.31	0.69
Not accept	0.14	0.86

Maintenance price

	high	low
Accept	0.26	0.74
Not accept	0.68	0.32

bind $_{\text {Bying }}$ (NB, high)

Class: Car Acceptability Maintenance price

Accept	Not accept
$0.69 * 0.31$	$0.31 * 0,14$

	high	low
Accept	0.26	0.74
Not accept	0.68	0.32

Merging of Naïve Bayesian Classifiers

$$
\begin{aligned}
\sqcup_{N B}: & N B[\vec{A}, D] \times N B\left[\vec{A}^{\prime}, D\right] \rightarrow N B\left[\vec{A}^{\prime \prime}, D\right] \\
\sqcup_{N B}\left(d f, d f^{\prime}\right):= & n b^{n}\left(\sqcup_{D}\left(d i s t(d f), \operatorname{dist}^{\prime}\left(d f^{\prime}\right)\right),\right. \\
& \left.\left.p d_{A_{A^{\prime}}}\left(d f, c_{1}\right), \ldots, p d_{A_{A^{\prime}}}\left(d f, c_{1}\right)\right), p d_{A_{1}^{\prime}}\left(d f^{\prime}, c_{1}\right), \ldots, p d_{A_{j}^{\prime}}\left(d f^{\prime}, c_{1}\right)\right) \\
& \sqcup_{D}\left(p d_{A_{1}^{\prime \prime}}\left(d f, c_{1}\right), p d_{A_{1}^{\prime \prime}}\left(d f^{\prime}, c_{1}\right)\right), \ldots, \sqcup_{D}\left(p d_{A_{1}^{\prime \prime}}\left(d f, c_{1}\right), p d_{A_{1}^{\prime \prime}}\left(d f^{\prime}, c_{1}\right)\right), \\
& \cdots \\
& \left.\left.p d_{A_{1}}\left(d f, c_{k}\right), \ldots, p d_{A_{i}}\left(d f, c_{k}\right)\right), p d_{A_{1}^{\prime}}\left(d f^{\prime}, c_{k}\right), \ldots, p d_{A_{j}^{\prime}}\left(d f^{\prime}, c_{k}\right)\right) \\
& \sqcup_{D}\left(p d_{A_{1}^{\prime \prime}}\left(d f, c_{k}\right), p d_{A_{1}^{\prime \prime}}\left(d f^{\prime}, c_{k}\right)\right), \ldots, \sqcup_{D}\left(p d_{A_{1}^{\prime \prime}}\left(d f, c_{k}\right), p d_{A_{A_{1}^{\prime \prime}}}\left(d f^{\prime}, c_{k}\right)\right) \\
p d_{A_{i}}: \quad & N B[\vec{A}, D] \times C \rightarrow D\left(A_{i}\right)
\end{aligned}
$$

Scenario One: Same Formal Context

Scenario Two: Disjoint Contexts

Replace $\sqcup\left(d f_{1}^{0}, d f_{2}\right):=\sqcup\left(d f_{2}, d f_{1}^{0}\right)$ with:

$$
\begin{aligned}
\sqcup_{H}: & D F^{0}[\{\overrightarrow{0}\}, D] \times N B[\vec{A}, D] \rightarrow N B[\vec{A}, D] \\
d f_{d g}^{0} \sqcup_{H} d f_{n b}:= & n b\left(\operatorname{dist}\left(d f_{d g}^{0}\right) \sqcup_{D} \operatorname{dist}\left(d f_{n b}\right),\right. \\
& \left.p d_{A_{1}}\left(d f, c_{1}\right), \ldots, p d_{A_{n}}\left(d f, c_{1}\right) \ldots, p d_{A_{1}}\left(d f, c_{k}\right), \ldots, p d_{A_{n}}\left(d f, c_{k}\right)\right)
\end{aligned}
$$

Scenario Two: Cont'd

Scenario Three: General

Experiments

Conclusions

- Merge \sqcup operation over decision functions is a general way to combine classifiers;
- Decision Algebra allows applying merge implementing:
- a single core-operation bind over classifiers defined as decision functions;
- a \sqcup_{D} over co-domain of decision functions (usually represented as distributions);
- We showed that merging of a series of probably accurate decision functions results an more accurate decision function (experiments: $2.7 \%-17 \%)$.

Linnæus University

Thank you for your attention. Questions?

[^0]: ${ }^{1}$ Linnaeus University, Sweden

