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Introduction

I Classification is a common problem that arises in different fields of
Computer Science (data mining, information storage and retrieval,
knowledge management);

I Classification approaches are often tightly coupled to:

I learning strategies: different algorithms are used;
I data structures: represent information in different ways;
I how common problems are addressed: workarounds;

I It is not that easy to select an appropriate classification model for
classification problem (be aware of accuracy, robustness, scalability);
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Problem and Motivation

I Simple combining of classifiers learned over different data sets of
the same problem is not straightforward;

I Current work is done in aggregation and meta-learning:

I combine different classifiers learned over same data set;
I construct single classifier learned on the different variations of

the same classification problem;
I as a result - do not take into account that the context can

differ.

I Combining classifiers with partly- or completely- disjoint contexts
use one single classification approach for base-level classifiers;

I Generality gets lost: incomparable, difficult benchmarking, hard to
propagate advances between domains;
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Proposed Approach

I Use Decision Algebra that defines classifiers as re-usable black-boxes
in terms of so-called decision functions;

I Define a general merge operation over these decisions functions
which allows for symbolic computations with classification
information captured;

I Show an example of merging classifiers of different classification
approaches;

I Show that the merger of classifiers tendentiously becomes more
accurate;
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Classification Information

I Classification information is a set of decision tuples:

CI = {(~a1, c1), . . . (~an, cn)}

I It is complete if: ∀~a ∈ ~A : (~a, c) ∈ CI ;

I It is non-contradictive if: ∀(~ai , ci ), (~aj , cj) ∈ CI : ~ai = ~aj ⇒ ci = cj ;

I Problem domain (A, C) of CI is a superset of ~A× C , that defines

the actual classification problem, where ~A ∈ A;

Decision Algebra Department of Computer Science, Linnaues University

Merging Classifiers of Different Classification Approaches 6(28)

http://www.lnu.se/dfm


Decision Function

I Decision Function is a representation of complete and possibly
contradictive decision information:

df : ~A→ D(C )

maps actual context ~a ∈ ~A to a (probability) distribution D(C );

I It is a higher order (or curried) function:
df n : An → (An−1 → (. . . (A1 → (→ D(C )))));

I Can be easily represented as a decision tree or decision graph:

df n = x1(df n−1
1 , . . . , df n−1

|Λ1| )

where Λi is a domain of attribute A1
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Graph Representation of Decision Function

I Decision function df2 = x1(na, x2(na, na, a, a), x2(na, na, a, a), a)
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2na 2 a

na a a na na a a

1

na

2

a

high

vhigh

vhigh med low

high med
low

vhigh high med low

Figur: A tree (left) and graph (right) representation of df2. Each node
labeled with n represents a decision term with a selection operator xn;
each square leaf node labled with c corresponds to a probability
distribution over classes C with c the most probable class.
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Decision Algebra

I (DA) is a theoretical framework that is defined as a parameterized

specification, with ~A and D(C ) as parameters. It provides a general
representation of classification information as an abstract classifier;
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Operations Over Decision Functions

I Constructor xn:

xn : Λ1 × DF [~A′,D]× · · · × Λ1 × DF [~A′,D]︸ ︷︷ ︸
|Λ1| times

→ DF [~A,D]

I Bind binds attribute Ai to an attribute value a ∈ Λi :

bindAi : DF [~A,D]× Λi → DF [~A′,D]

bindA1 (xn(a1, df1, · · · , a|Λ1|, df|Λ1|), a) ≡ dfi , if a = ai

bindA1 (df 2, high) = x2(na, na, a, a)

I Evert changes the order of attributes in the decision function:

evertAi : DF [~A,D]→ DF [~A′,D]

evertAi (df ) := x(a1, bindAi (df , a1), . . . ,

a|Λi |, bindAi (df , a|Λi |))

evertA2 (df 2) = x2(x1(na, na, na, a), x1(na, na, na, a),
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Merge Operation over Decision Functions

I Merge operator tD over class distribution D(C );

tD : D(C )× D(C )→ D(C )

d(C ) tD d ′(C ) = {(c , p + p′)|(c , p) ∈ d(C ), (c , p′) ∈ d ′(C )}

I General merge operation over decision functions:

t : DF1[~A,D]× DF2[~A,D]→ DF ′[~A,D]

I Merge over constant decision functions df 1
0, df 2

0 ∈ DF ∅[{~0},D]:

t(df 0
1, df

0
2) := x0(tD(df 0

1, df
0
2))
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Scenario One: Same Formal Context

I Prerequisite: The decision functions df 1 ∈ DF 1[~A,D] and

df 2 ∈ DF 2[~A′,D] are constructed over different samples of the

same problem domain and ~A = ~A′ = Λ1 × . . .× Λn;

t(df 1, df 2) := xn( a1,t(bindA1 (df 1, a1), bindA1 (df 2, a1)),
. . . ,
ak ,t(bindA1 (df 1, ak), bindA1 (df 2, ak)))
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Scenario One: Cont’d

1: if df 1 ∈ DF∅[{~0},D] ∧ df 2 ∈
DF∅[{~0},D] then

2: return x(tD(df 1, df 2))
3: end if
4: for all a ∈ Λ1 do
5: df a =

t(bind1(df 1, a), bind1(df 2, a))
6: end for
7: return

x(a1, df a1 , . . . , a|Λ1|, df a|Λ1|
)
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Scenario Two: Disjoint Formal Contexts

I Prerequisite: The decision functions df 1 ∈ DF 1[~A,D] and

df 2 ∈ DF 2[~A′,D] are constructed over samples with disjoint formal

contexts of the same problem domain: ~A = Λ1 × . . .× Λn and
~A′ = Λ′1× . . .×Λ′m and attributes {A1, . . . ,An}∩ {A′1, . . . ,A′m} = ∅;

t(df 1, df 2) := xn( a1,t(bindA1 (df 1, a1), bindA1 (df 2, a1)),
. . . ,
ak ,t(bindA1 (df 1, ak), bindA1 (df 2, ak)))

t(df 0
1, df2) := t( df2, df

0
1)
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Scenario Two: Cont’d

1: if df 1 ∈ DF∅[{~0},D] ∧ df 2 ∈
DF∅[{~0},D] then

2: return x(tD(df 1, df 2))
3: end if
4: if df 1 ∈ DF∅[{~0},D] then
5: return t(df 2, df 1))
6: end if
7: for all a ∈ Λ1 do
8: df a =

t(bind1(df 1, a), bind1(df 2, a))
9: end for
10: return

x(a1, df a1 , . . . , a|Λ1|, df a|Λ1|
)
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Scenario Three: General Case

I Prerequisite: For this general case, scenarios one and two are just
special cases. The decision functions df 1 ∈ DF 1[~A,D] and

df 2 ∈ DF 2[~A′,D] are constructed over samples with arbitrary formal

contexts of the same problem domain: ~A = Λ1 × . . .× Λn and
~A′ = Λ′1 × . . .× Λ′m;

t(df 1, df 2) := xn( a1,t(bindA1 (df 1, a1), bindA1 (df 2, a1)),
. . . ,
ak ,t(bindA1 (df 1, ak), bindA1 (df 2, ak)))

t(df 0
1, df2) := t( df2, df

0
1)

t(df1, df2) := t( df1, evertA1 (df2)) iff A1 ∈ {A′2, . . . ,A′m}

Merging Classifiers Department of Computer Science, Linnaues University

Merging Classifiers of Different Classification Approaches 16(28)

http://www.lnu.se/dfm


Scenario Three: Cont’d

1: if df 1 ∈ DF∅[{~0},D] ∧ df 2 ∈
DF∅[{~0},D] then

2: return x(tD(df 1, df 2))
3: end if
4: if df 1 ∈ DF∅[{~0},D] then
5: return t(df 2, df 1))
6: end if
7: if A1 6= A′1 ∧ A1 ∈
{A′2, . . . ,A′m} then

8: return t(df1, evertA1
(df2))

9: end if
10: for all a ∈ Λ1 do
11: df a =

t(bind1(df 1, a), bind1(df 2, a))
12: end for
13: return

x(a1, df a1 , . . . , a|Λ1|, df a|Λ1|
)
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Accuracy of the Merged Decision Functions

I Decision function df1 is more accurate than a decision function df2
iff it more often gives the ”right” classification based on some
ground truth (which is usually not known);

I oracle~a : C → R is the accurate classification probability
distribution;

I oracle : ~A→ D(C ) is an accurate decision function with

∀~a ∈ ~A : oracle(~a) = oracle~a;

I df : ~A→ D(C ) is probably accurate with respect to oracle iff

∀~a ∈ ~A : df (~a) is a random sample of oracle~a;

I Theorem: Let df 1, . . . , df n be a series of independently learned
decision functions df : ~A→ D(C ) that are probably accurate with
respect to an accurate decision function
oracle : ~A→ D(C ). For large n, the merged decision function
df 1 t . . . t df n converges in probability to the oracle.
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Näıve Bayesian Classifiers

I Constructor:

nbn : D(C )× PD1
1 × · · · × PD1

n × . . .× PDk
1 × · · · × PDk

n︸ ︷︷ ︸
n×k conditional probability distributions

→ NB[~A,D].

I Probability distribution functions : PD j
i =̂PD(Λi |C = cj);

I Bind operation: bindAi : NB[~A,D]× Λi → NB[~A′,D]

bindAi
(df n, a) := nbn−1(consD ((c1, probc1,i

(df n, a)), . . . (ck , probck ,i
(df n, a))),

pd1(df n, c1), . . . , pd i−1(df n, c1), pd i+1(df n, c1), . . . , pdn(df n, c1),

. . .

pd1(df n, ck ), . . . , pd i−1(df n, ck ), pd i+1(df n, ck ), . . . , df nn(df n, ck ))

probc,i (df , a) = prob(dist(df ), c) · prob(pdAi
(df , c), a)
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Bind: Example

Accept	   Not	  accept	  

0.69	   0.31	  

Class: Car Acceptability 
high	   low	  

Accept	   0.31	   0.69	  

Not	  accept	   0.14	   0.86	  

Buying price 

high	   low	  

Accept	   0.26	   0.74	  

Not	  accept	   0.68	   0.32	  

Maintenance price 

Accept	   Not	  accept	  

0.69	  *	  0.31	   0.31	  *	  0,14	  

Class: Car Acceptability 
high	   low	  

Accept	   0.26	   0.74	  

Not	  accept	   0.68	   0.32	  

Maintenance price 

bind Bying (NB, high) 
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Merging of Näıve Bayesian Classifiers

tNB : NB[~A,D]× NB[~A′,D]→ NB[~A′′,D]

tNB(df , df ′) := nbn(tD(dist(df ), dist(df ′)),

pdA1
(df , c1), . . . , pdAi

(df , c1)), pdA′1
(df ′, c1), . . . , pdA′j

(df ′, c1))

tD(pdA′′1
(df , c1), pdA′′1

(df ′, c1)), . . . ,tD(pdA′′
l

(df , c1), pdA′′
l

(df ′, c1)),

. . .

pdA1
(df , ck ), . . . , pdAi

(df , ck )), pdA′1
(df ′, ck ), . . . , pdA′j

(df ′, ck ))

tD(pdA′′1
(df , ck ), pdA′′1

(df ′, ck )), . . . ,tD(pdA′′
l

(df , ck ), pdA′′
l

(df ′, ck ))

pdAi
: NB[~A,D]× C → D(Ai )
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Scenario One: Same Formal Context
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Scenario Two: Disjoint Contexts

Replace t(df 0
1, df2) := t(df2, df

0
1) with:

tH : DF 0[{~0},D]× NB[~A,D]→ NB[~A,D]

df 0
dg tH df nb := nb(dist(df 0

dg ) tD dist(dfnb),

pdA1
(df , c1), . . . , pdAn

(df , c1) . . . , pdA1
(df , ck ), . . . , pdAn

(df , ck ))
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Scenario Two: Cont’d
Class:                         [0.69, 0.23, 0.04, 0.03]
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Scenario Three: General
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Experiments
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Conclusions

I Merge t operation over decision functions is a general way to
combine classifiers;

I Decision Algebra allows applying merge implementing:

I a single core-operation bind over classifiers defined as decision
functions;

I a tD over co-domain of decision functions (usually represented
as distributions);

I We showed that merging of a series of probably accurate decision
functions results an more accurate decision function (experiments:
2.7% - 17%).
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Thank you for your attention. Questions?
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