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Data Streams

Sensor Data Call center records

Data Streams:

• are continuous, effectively infinite,  flows of data

• are increasingly common in today’s connected and data driven 
world

• may come from disparate sources combined into a single larger 
stream

• evolve over time

Micro-blogs

News Feeds
Network Traffic
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Use Case: 

Categorization of Textual Media 
• Social media, blogs/micro-blogs, and aggregated news 

feeds.

• Addressable Problems:
– Author attribution,
– Sentiment categorization,
– Syndromic surveillance 

• Computational Epidemiology (CDC)
• Emergency Response (FEMA)
• Natural/Weather phenomena (NOAA, USGS)

• Illustrative data sets:
– Twitter
– RSS feeds
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Use Case: 

Network Monitoring 

• Network protection:

– insider threat detection

– bandwidth allocation/ resource management

– Worm/virus/malware propagation

– trending analysis 

• Illustrative data sets:

– KDD Cup ’99
• Salvatore J. Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K. Chan. Cost-based 

Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection: 
Results from the JAM Project.
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Use Case: 

Sensor Data Monitoring

• Systems need to discern the global or entity 
states from a collection of sensor feeds in near 
real-time
– Patient health monitoring

– Environmental monitoring

– Industrial monitoring

• Illustrative data set: 
– PAMAP2 Physical Activity Monitoring Data Set 

• A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring. 
The 16th IEEE International Symposium on Wearable Computers (ISWC), 2012.
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Problem Statement
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How do we assign accurately 
predicted labels to instances in a 
continuous, non-stationary and 
evolving data stream?
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Generally Recognized Challenges

• Data set is effectively infinite, so:

– the algorithm has only a single opportunity to use each data instance (i.e. one-pass), 

– must limit the memory utilization (i.e. cannot grow indefinitely),

– cannot pre-normalize or pre-inspect the data as a whole

• The algorithm must limit the time complexity of the training and prediction.

• The algorithm should not unnecessarily reduce the feature space.

• The algorithm should be able to predict a label in near real-time.

• The algorithm should handle evolving data, including:

– Concept Drift: changes in the feature values

– Feature evolution: addition of new features, removal of old features, and changes in 

feature usage

– Novel class appearances:  completely new concept appear in the stream
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Challenges: 

Data Drift and Evolution
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Challenges:

Required Training Data
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Current state-of-the-art algorithms use a fully-supervised methodology, but in real 
data sets, only a fraction of the data is actually labeled, if any.

t-1 t t+1
Labeled & 
classified

Unlabeled 
& classified

Unlabeled & some 
classified

Test & Train
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Challenges:

Lack of Test Harness
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Challenges:

Lack of Test Harness
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Challenges:

Lack of Test Harness
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Challenges:

Conjectures of Data Streams
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Conjecture #1: 
A data stream requiring automated label classification 

will have ground truth for at most a minority of the data 
tuples present in the stream.

Conjecture #2: 
A continuous data stream consists of more data than 

a static data set.

Conjecture #3: 
An evolving continuous data stream consists of 

continuous fluctuations in observed data distributions.
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Approach Comparison
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In addition, no other current approach addresses semi-supervised 
learning in the dynamic streaming context.
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Approach: DXMiner

Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class 
Detection in Concept-Drifting Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011) 

• Uses a chunk-based approach 

• Creates hyper-sphere clusters

• Uses majority voting of per-chunk classifiers

• Uses a unified cohesion/ separation metric to
discover novel classes among outliers
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Approach: SluiceBox V1.0

[1] B. Parker, A. Mustafa, and L. Khan, “Novel class detection and feature via a tiered ensemble approach for stream mining,” in Proceedings of 
the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, ser. ICTAI ’12. IEEE Computer Society, 2012, pp. 1171– 1178

[2] A. Haque, B. Parker, and L. Khan, “Labeling instances in evolving data streams with MapReduce.”  2013 IEEE International Congress on Big 
Data. Santa Clara, CA: IEEE, 2013.

• Benefits:
o Detects Novel Classes, 
o Tracks concept drift, 
o Handles feature evolution
o Uses targeted distance and classifier algorithms per data type
o Uses Density-based clustering for Novel Class Detection and  
data correlation
o Enables semi-supervised learning
o Both Ensemble and Clustering easily parallelized

◊ QtConcurrent MapReduce on multi-Core systems
◊ Multi-node MapReduce via Hadoop
◊ GPU massive vector parallelism
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• Weaknesses:
o Potentially slower  without 

parallelism
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Approach: MOA

P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and B. Pfahringer, “Clustering performance on evolving data 
streams: Assessing algorithms and evaluation measures within moa,” in Data Mining Workshops (ICDMW), 2010 IEEE 
International Conference on, 2010, pp. 1400–1403

• Benefits:
o Available algorithms for stream classification, 
including handling of concept drift
o Available algorithms for stream generation
o Available algorithms for stream clustering
o Available methods for result testing

• Weaknesses:
o Not horizontally scalable alone (see SOMOA)
o No current methods for novel class detection nor 
feature evolution
o Currently only provides fully supervised methods
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Approach: IRND Harness
Induced Random Non-Stationary Data (IRND) Generator

o Large number of distinct concept definitions
o large number of numeric and/or nominal features
o multiple centroids per concept
o non-Gaussian feature value distributions
o Induced noise for feature value (variance) and label (labeling error)
o Concept evolution via limiting number of active rotating concepts
o Feature evolution via limiting number of active rotating attributes per concept
o Concept drift via tunable attribute value velocity thresholds and velocity shift 
probabilities
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Approach: IRND Harness
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Approach: SluiceBox V2.0
M3 Algorithm (Modal Mixture Model)

o Ensemble Method, 
o Weighting based on Reinforcement Learning, 
o Uses online base learners/classifiers
o Developed within the MOA framework
o Contributions to MOA Framework:

o Reinforcement Learning Ensemble
o IRND test harness
o Novel Class Detection tasks
o Additional test-case classifiers
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Approach: SluiceBox V2.0
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Perceptron
Naïve Bayes

AHOT

M3
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Approach: SluiceBox V2.0
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Developed in accordance with the framework



The University of Texas at Dallas utdallas.edu

Questions?
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Accuracy Curve for  2 billion records
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Accuracy Curve for Reduced Training

27



The University of Texas at Dallas utdallas.edu

SluiceBox V1.7 Workflow
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