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Data Streams

Data Streams:
e are continuous, effectively infinite, flows of data

e are increasingly common in today’s connected and data driven
world

* may come from disparate sources combined into a single larger
stream

* evolve over time

{
{

Név;s Feeds Sensor Data Call center records
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Use Case: §
Categorization of Textual Media

* Social media, blogs/micro-blogs, and aggregated news
feeds.

 Addressable Problems:
— Author attribution,
— Sentiment categorization,

— Syndromic surveillance
. Computational Epidemiology (CDC)
. Emergency Response (FEMA)
. Natural/Weather phenomena (NOAA, USGS)

e |llustrative data sets:

— Twitter
— RSS feeds
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Use Case:
Network Monitoring

 Network protection:
— insider threat detection
— bandwidth allocation/ resource management

— Worm/virus/malware propagation
— trending analysis ®,

a8
- -t
i

e |llustrative data sets:
— KDD Cup 99

* Salvatore J. Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K. Chan. Cost-based
Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection:
Results from the JAM Project.
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Use Case:
Sensor Data Monitoring

e Systems need to discern the global or entity

states from a collection of sensor feeds in near
real-time

— Patient health monitoring
— Environmental monitoring
— Industrial monitoring

* |llustrative data set:
— PAMAP2 Physical Activity Monitoring Data Set

* A.Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring.
The 16th IEEE International Symposium on Wearable Computers (ISWC), 2012.
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Problem Statement

[ of

How do we assignh accurately
predicted labels to instances in a
continuous, non-stationary and
evolving data stream?
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Generally Recognized Challenges

Data set is effectively infinite, so:
— the algorithm has only a single opportunity to use each data instance (i.e. one-pass),
— must limit the memory utilization (i.e. cannot grow indefinitely),

— cannot pre-normalize or pre-inspect the data as a whole
The algorithm must limit the time complexity of the training and prediction.
The algorithm should not unnecessarily reduce the feature space.
The algorithm should be able to predict a label in near real-time.

The algorithm should handle evolving data, including:
— Concept Drift: changes in the feature values

— Feature evolution: addition of new features, removal of old features, and changes in

feature usage

— Novel class appearances: completely new concept appear in the stream
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Challenges:
Data Drift and Evolution

Gonceptbrit Feature Evolution Concept Evolution

s (Class bounaariesc : » New features appear * Novel classes

OVERtime J Featurg - e Recurrent Novel Classes
Per-concepti type/distribution

SUBSPace may changes

A data chunk

—— Current hyperplane * Negative mstance
o Positive instance

® Concept-drift error

Previous hyperplane
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Challenges:
Required Training Data

Current state-of-the-art algorithms use a fully-supervised methodology, but in real
data sets, only a fraction of the data is actually labeled, if any.
Test & Train

Unlabeled & some Unlabeled Labeled &
classified & classified  classified

Data Stream Evaluation Classification ) - .
Manager Algorithm Data Stream Evaluation Classification
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Challenges:
L ack of Test Harness
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Challenges:
L ack of Test Harness

Attribute “dst_bytes’s Value Drift from KDDI9
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Challenges:
L ack of Test Harness

Attribute Drift for Select Hyperplane Features
Attribute 'a9’s Value Drift from Hyperplane
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Challenges:
Conjectures of Data Streams

Conjecture #1:

A data stream requiring automated label classification
will have ground truth for at most a minority of the data
tuples present in the stream.

Conjecture #2:
A continuous data stream consists of more data than
a static data set.

Conjecture #3:
An evolving continuous data stream consists of
continuous fluctuations in observed data distributions.
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Approach Comparison

SuiceBox Naive Bayes” | AHOT" |

emws e e o o o [ e 1 e
Concepl Subspace Tracking | @ | 0 | @ | 0 | © | 0 | _© _
Fly Online Process | @ | @ | @ | 0 | e | e | e |
 Owps | @ | e | e | e | e | e | e _
[ VuligpeAwbues | @ [ O | 0 [ 0 [ O [ e | e
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Legend: @= full support, = partial support &= no support. As implemented in MOA, © AdaHoeffdingOptionTree

In addition, no other current approach addresses semi-supervised
learning in the dynamic streaming context.
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Approach: DXMiner
&

» Uses a chunk-based approach

* Creates hyper-sphere clusters

* Uses majority voting of per-chunk classifiers @

* Uses a unified cohesion/ separation metric to
discover novel classes among outliers
Last labeled
oo e
Qutlier
detection
Update

Buffering and
novel class
cetection

Classmcanon

Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class
Detection in Concept-Drifting Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)

The University of Texas at Dallas ut b utdallas.edu 16



Approach: SluiceBox V1.0 &S

* Benefits: N

o Detects Novel Classes,
o Tracks concept drift,
o Handles feature evolution pLLGTL AT Streaming
o Uses targeted distance and classifier algorithms per data type Ensemble Density
o Uses Density-based clustering for Novel Class Detection and i) SISl
data correlation
o Enables semi-supervised learning

o Both Ensemble and Clustering easily parallelized

¢ QtConcurrent MapReduce on multi-Core systems Miain Mult-Class
0 Multi-node MapReduce via Hadoop Ensemple
¢ GPU massive vector parallelism ---( Class Label ¢,
* Weaknesses: FEEZECMEES=
o Potentially slower without E3 |

parallelism

Mominal Feature F, Mumeric Feature F;
(Naive Bayes) ses | (BoostedLlinear Threshold)

[1] B. Parker, A. Mustafa, and L. Khan, “Novel class detection and feature via a tiered ensemble approach for stream mining,” in Proceedings of
the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, ser. ICTAI “12. IEEE Computer Society, 2012, pp. 1171—- 1178

[2] A. Haque, B. Parker, and L. Khan, “Labeling instances in evolving data streams with MapReduce.” 2013 IEEE International Congress on Big
Data. Santa Clara, CA: IEEE, 2013.
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Approach: MOA

* Benefits:
o Available algorithms for stream classification,
including handling of concept drift oy
o Available algorithms for stream generation \{\

o Available algorithms for stream clustering
o Available methods for result testing
* Weaknesses:
o Not horizontally scalable alone (see SOMOA)
o No current methods for novel class detection nor
feature evolution
o Currently only provides fully supervised methods

_ MOA Framework

| Data Source | -
—= Ewvaulation Method &
- B data feed/ learning
= | generator algorithm
1 1

\ Extension points

P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and B. Pfahringer, “Clustering performance on evolving data
streams: Assessing algorithms and evaluation measures within moa,” in Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on, 2010, pp. 1400-1403
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Approach: IRND Harness

Induced Random Non-Stationary Data (IRND) Generator

o Large number of distinct concept definitions

o large number of numeric and/or nominal features

o multiple centroids per concept

o non-Gaussian feature value distributions

o Induced noise for feature value (variance) and label (labeling error)

o Concept evolution via limiting number of active rotating concepts

o Feature evolution via limiting number of active rotating attributes per concept
o Concept drift via tunable attribute value velocity thresholds and velocity shift
probabilities

o
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Approach: SluiceBox V2.0 's

M3 Algorithm (Modal Mixture Model)

o Ensemble Method,
o Weighting based on Reinforcement Learning,

Algorithm 3 M? Train
Input: data x;, ensemble =, learningFactor «, weights @

o Uses online base learners/classifiers forallc€Zdo
o Developed within the MOA framework f‘_:;(frfd‘t‘;t“y’ R taxw
o Contributions to MOA Framework: if @, < threshold then
. . c.reset(’
o Reinforcement Learning Ensemble ;If:i(i}ﬂ
o IRND test harness end if
: c.train(z;)
o Novel Class Detection tasks end for

o Additional test-case classifiers
M3

PAMAP?2 ., 00:02:02 || ¢ 00:10:22 || 86.64 | |
: (0674 | 00:00:19 || 94.04 | 00:01:12 || 8810 | 00:12:14
7.
IRND5M 50% -

00:04:04

85.77 | 70.00
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Approach: SluiceBox V2.0

Classifier Accuracy owver Data Stream - IRNDSMO.05
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Approach: SluiceBox V2.0 &

IRND
Generator
Semi-
Supervised
MOETTask : : Streaming
Parallelized Streaming b "
\E Ensemble Density enS|.y
Ensemble Classification Clustering Clustering
Algorithm Novel Class
Label Finalization Detector
Novel Class
Detection
Evaluator

Developed in accordance with the ‘,\.x_:\ Moa framework
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Questions?
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Accuracy Curve for 2 billion records
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Accuracy Curve for Reduced Training

Accuracy

Chunk Accuracy
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SluiceBox V1.7 Workflow
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