

Mining Data Streams

Online Prediction of Data Instance Labels

Presenters: Brandon S. Parker (PhD Student)

Ahsanul Haque (PhD Student)

Supervising Professor: Dr. Latifur Khan

Big Data Management and Analytics Lab

Agenda

Applications

Problem Statement

Challenges

Approaches

Data Streams

Data Streams:

- are continuous, effectively infinite, flows of data
- are increasingly common in today's connected and data driven world
- may come from disparate sources combined into a single larger stream
- evolve over time

Sensor Data

Call center records

Use Case: Categorization of Textual Media

- Social media, blogs/micro-blogs, and aggregated news feeds.
- Addressable Problems:
 - Author attribution,
 - Sentiment categorization,
 - Syndromic surveillance
 - Computational Epidemiology (CDC)
 - Emergency Response (FEMA)
 - Natural/Weather phenomena (NOAA, USGS)
- Illustrative data sets:
 - Twitter
 - RSS feeds

- Network protection:
 - insider threat detection
 - bandwidth allocation/ resource management
 - Worm/virus/malware propagation
 - trending analysis
- Illustrative data sets:
 - KDD Cup '99
 - Salvatore J. Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip K. Chan. Cost-based Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection: Results from the JAM Project.

- Systems need to discern the global or entity states from a collection of sensor feeds in near real-time
 - Patient health monitoring
 - Environmental monitoring
 - Industrial monitoring

- Illustrative data set:
 - PAMAP2 Physical Activity Monitoring Data Set
 - A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring.
 The 16th IEEE International Symposium on Wearable Computers (ISWC), 2012.

Problem Statement

How do we assign accurately predicted labels to instances in a continuous, non-stationary and evolving data stream?

Generally Recognized Challenges

- Data set is effectively infinite, so:
 - the algorithm has only a single opportunity to use each data instance (i.e. one-pass),
 - must limit the memory utilization (i.e. cannot grow indefinitely),
 - cannot pre-normalize or pre-inspect the data as a whole
- The algorithm must limit the time complexity of the training and prediction.
- The algorithm should not unnecessarily reduce the feature space.
- The algorithm should be able to predict a label in near real-time.
- The algorithm should handle evolving data, including:
 - Concept Drift: changes in the feature values
 - Feature evolution: addition of new features, removal of old features, and changes in feature usage
 - Novel class appearances: completely new concept appear in the stream

Challenges: Data Drift and Evolution

Concept Drift

- Class boundaries change over time
- Per-concept feature subspace may change

Feature Evolution

- New features appear
- Feature type/distribution changes

Concept Evolution

- Novel classes
- Recurrent Novel Classes

Challenges: Required Training Data

Current state-of-the-art algorithms use a fully-supervised methodology, but in real data sets, only a *fraction* of the data is actually labeled, if any.

Challenges: Lack of Test Harness

Challenges: Lack of Test Harness

Challenges: Lack of Test Harness

Challenges: Conjectures of Data Streams

Conjecture #1:

A data stream requiring automated label classification will have ground truth for *at most* a minority of the data tuples present in the stream.

Conjecture #2:

A continuous data stream consists of more data than a static data set.

Conjecture #3:

An evolving continuous data stream consists of continuous fluctuations in observed data distributions.

Approach Comparison

	SluiceBox	DXMiner	IncPreDeCon	DenStream ¹	FRAHST	Naive Bayes ¹	AHOT ^{1 2}
Labels Instances	•	•	0	0	0	•	•
Concept Subspace Tracking	•	0	•	0	•	0	•
Fully Online Process	•	•	•	0	•	•	•
One-pass	•	•	•	•	•	•	•
Multi-type Attributes	•	0	0	0	0	•	•
Not Limited to Gaussian	•	•	•	•	•	0	0
Concept Drift Tracking	•	•	•	•	•	•	•
Feature Evolution	•	•	0	0	0	0	•
Novel Class Detection (NCD)	•	•	0	•	•	0	0
Arbitrary Shape NCD	•	•	•	•	•	0	0
Subspace Embedded NCD	•	0	•	0	•	0	0
Outlier Insensitivity	•	•	•	•	•	0	•
Legend: ●= full support, (As implemented in MOA, ² AdaHoeffdingOptionTree						

In addition, no other current approach addresses semi-supervised learning in the dynamic streaming context.

Approach: DXMiner

• Uses a chunk-based approach

Creates hyper-sphere clusters

Uses majority voting of per-chunk classifiers

 $\lambda_{+,5}(x) \qquad b_{+}(x) \qquad \lambda_{-}(x)$ $\lambda_{+,5}(x) \qquad b_{+}(x) \qquad \lambda_{-}(x)$ $\lambda_{+,5}(x) \qquad \lambda_{-}(x)$

 Uses a unified cohesion/ separation metric to discover novel classes among outliers

Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: *Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints*. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)

Approach: SluiceBox V1.0

• Benefits:

- Detects Novel Classes,
- Tracks concept drift,
- Handles feature evolution
- Uses targeted distance and classifier algorithms per data type
- Uses Density-based clustering for Novel Class Detection and data correlation
- o Enables semi-supervised learning
- o Both Ensemble and Clustering easily parallelized
 - ♦ QtConcurrent MapReduce on multi-Core systems
 - ♦ Multi-node MapReduce via Hadoop
 - ♦ GPU massive vector parallelism

• Weaknesses:

Potentially slower without parallelism

[1] B. Parker, A. Mustafa, and L. Khan, "Novel class detection and feature via a tiered ensemble approach for stream mining," in Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence, ser. ICTAI '12. IEEE Computer Society, 2012, pp. 1171–1178

[2] A. Haque, B. Parker, and L. Khan, "Labeling instances in evolving data streams with MapReduce." 2013 IEEE International Congress on Big Data. Santa Clara, CA: IEEE, 2013.

Approach: MOA

• Benefits:

- Available algorithms for stream classification, including handling of concept drift
- Available algorithms for stream generation
- Available algorithms for stream clustering
- Available methods for result testing

Weaknesses:

- Not horizontally scalable alone (see SOMOA)
- No current methods for novel class detection nor feature evolution
- Currently only provides fully supervised methods

P. Kranen, H. Kremer, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and B. Pfahringer, "Clustering performance on evolving data streams: Assessing algorithms and evaluation measures within moa," in Data Mining Workshops (ICDMW), 2010 IEEE International Conference on, 2010, pp. 1400–1403

Approach: IRND Harness

Induced Random Non-Stationary Data (IRND) Generator

- Large number of distinct concept definitions
- o large number of numeric and/or nominal features
- o multiple centroids per concept
- o non-Gaussian feature value distributions
- Induced noise for feature value (variance) and label (labeling error)
- Concept evolution via limiting number of active rotating concepts
- o Feature evolution via limiting number of active rotating attributes per concept
- Concept drift via tunable attribute value velocity thresholds and velocity shift probabilities

Approach: IRND Harness

Approach: SluiceBox V2.0

M³ Algorithm (Modal Mixture Model)

- o Ensemble Method,
- Weighting based on Reinforcement Learning,
- Uses online base learners/classifiers
- Developed within the MOA framework
- Ocontributions to MOA Framework:
 - Reinforcement Learning Ensemble
 - IRND test harness
 - Novel Class Detection tasks
 - Additional test-case classifiers

```
Algorithm 3 M^3. Train

Input: data x_i, ensemble \Xi, learning Factor \alpha, weights \varpi for all c \in \Xi do

h:= c.predict(x_i)

\varpi_c = (1 - \alpha)(x.y_i = h) + \alpha \times \varpi_c

if \varpi_c < threshold then

c.reset()

\varpi_c := 1.0

end if

c.train(x_i)

end for
```

	HAT		AHOT		TAC-NB		M3		DXM		
Data Set	% Acc	Time	% Acc	Time							
PAMAP2	92.83	00:02:02	90.08	00:10:22	86.64	00:03:28	83.91	00:14:15	51.70	01:13:52	
KDD99	95.86	00:00:19	97.11	00:00:41	96.74	00:00:19	94.04	00:01:12	88.10	00:12:14	
Hyperplane	86.79	00:02:16	79.92	00:26:30	68.50	00:00:34	91.40	00:01:05	99.99	00:14:04	
SEA	89.50	00:03:34	89.53	00:02:46	88.22	00:00:14	88.26	00:00:34	89.21	03:15:07	
Netlogo	100.00	00:00:52	100.00	00:00:42	100.00	00:00:46	100.00	00:00:54	31.70	05:00:00	
IRNDeasy	99.31	00:06:10	99.34	00:14:06	99.65	00:07:36	99.17	00:26:04	66.04	00:53:39	
IRND5M	87.34	00:06:04	76.50	00:32:26	69.58	00:07:12	77.99	00:20:48	63.27	00:49:10	
IRND5M 50%	83.67	00:04:21	74.48	00:28:31	69.39	00:07:27	77.02	00:14:24	-	-	
IRND5M 25%	78.69	00:04:04	72.64	00:23:14	69.12	00:07:21	75.21	00:11:20	-	-	
IRND5M 5%	62.63	00:05:25	61.51	00:08:54	67.08	00:07:09	70.65	00:09:06	-	-	
Average	87.66		84.11		81.50		85.77		70.00		

Approach: SluiceBox V2.0

Approach: SluiceBox V2.0

IRND Generator

Semi-Supervised MOA Task

M³ Ensemble Algorithm

Novel Class
Detection
Evaluator

Streaming
Density
Clustering
Novel Class
Detector

Developed in accordance with the

framework

Questions?

Backup Slides

Accuracy Curve for 2 billion records

Accuracy Curve for Reduced Training

SluiceBox V1.7 Workflow

