

Drift Detection for Multi-label Data Streams Based on Label Grouping and Entropy

Zhong-wei Shi 1, Yi-min Wen 1, Chao Feng 1, Hai Zhao 2

¹ Guilin University of Electronic Technology ² Shanghai Jiao Tong University China

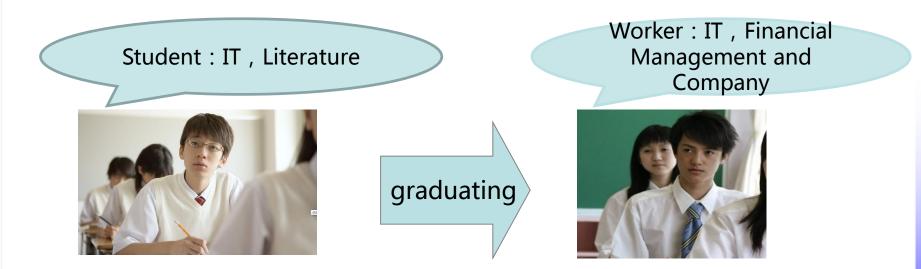
ICIaNov @ ICDM 2014, Shenzhen, China, December 14, 2014

Outline

Introduction The Drift Detection Method Experiments and Results Conclusion

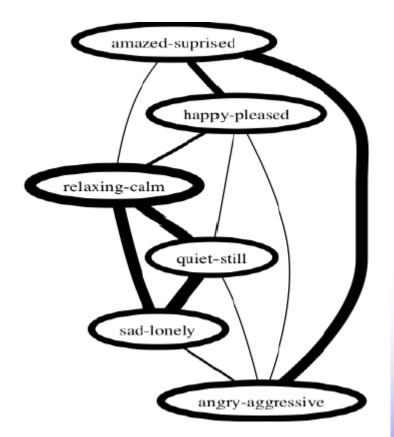
Introduction

In many emerging applications, each sample may be associated with more than one label and the correlation between class labels may change over time.



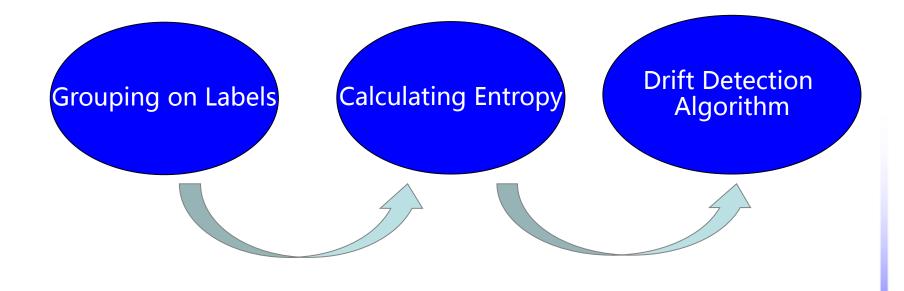
dependencies between labels

 the correlation relationship between labels and the distribution between features and multiple labels



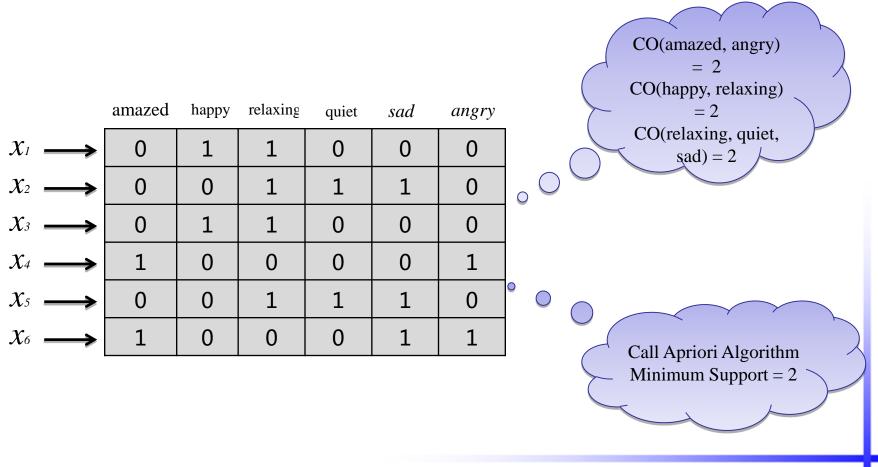
co-occurrences of music labeled with emotions

The Drift Detection Method



- > A. Grouping on Labels
- a). Algorithm 1: GL1()

It employs the Apriori algorithm to mine the frequent label sets and the basic motivation is the existence of co-occurrence between labels.



	amazed	happy	relaxing	quiet	sad	angry	
$X_1 \rightarrow$	0	1	1	0	0	0	
$X_2 \rightarrow$	0	0	1	1	1	0	
$X_3 \rightarrow$	0	1	1	0	0	0	THREE GROUPS : (amazed, angry),
$X_4 \rightarrow$	1	0	0	0	0	1	(happy, relaxing) and
$X_5 \rightarrow$	0	0	1	1	1	0	(relaxing, quiet, sad)
$\chi_6 \rightarrow$	1	0	0	0	1	1	
$x_1 \rightarrow$	amazed, a	ingry) (axing) (d)
	0		1		1	-	
$X_2 \rightarrow$	0		1		1		
$X_3 \rightarrow$	0		1		1		
$X_4 \rightarrow$	1		0		0		
$X_5 \rightarrow$	0		1		1		
$\chi_6 \rightarrow$	1		0		1		

b). Algorithm 2: GL2()

It mines the dependencies between labels by the clustering method and it can be instantiated with the k-means and EM algorithm.

Motivation: Clustering can place the similar and interdependent objects together and dissimilar and independent apart. Algorithm 2:GL2()

Input : {
$$(x_1, Y_1), \dots, (x_i, Y_i), \dots, (x_N, Y_N)$$
}; $L = \{l_1, \dots, l_m\}$; K
Output : $\overline{L} = \{\overline{l_1}, \dots, \overline{l_n}\}$; $x_i (1 \le i \le N)$ with new labels

From i To m

1

generate a new sample $\widetilde{x}_i = (y_1^i, ..., y_N^i)$ 2 generate the new label data $LD = (\tilde{x}_1, ..., \tilde{x}_m)$ 3 4 $\overline{X} \leftarrow \text{call } \text{EM}(LD, K);$ 5 For Each $\overline{X}_i \in \overline{X}$ **IF** $\widetilde{x}_i \in \overline{X}_i$ 6 **Then** add l_i to $\bar{l_i}$ 7 8 End 9 Get new $\overline{L} = \{\overline{l}_1, \dots, \overline{l}_n\}$ 10 For Each x_i $(1 \le i \le N)$ **For Each** $\overline{l}_i \in \overline{L}$ $(1 \le i \le n)$ 11 12 **IF** there is $y_i^j = 1$ and $l_i \in \overline{l_i}$ 13 **Then** annotate x_i with new label l_i 14 End **Return** \overline{L} 15 16 **Return** each x_i with new labels $\overline{l_i}$;

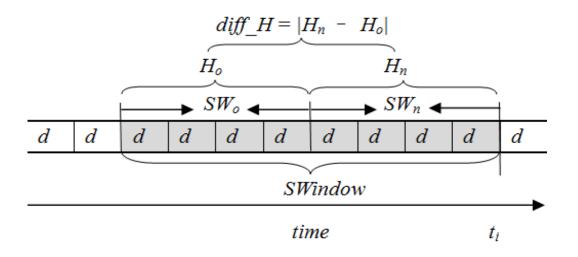
> B. Calculating Entropy

$$H_{i} = \frac{1}{S} \sum_{s=1}^{S} \sum_{k=1}^{K} \sum_{b=1}^{B} H_{iskb}$$

$$H_{iskb} = -[P_{iskb} \log_2(P_{iskb}) + (1 - P_{iskb}) \log_2(1 - P_{iskb})]$$

Piskb represents the probability of a sample belongs to the k^{th} label subset, with feature domain *s* in *b* at time t_i .

> C. Drift Detection Algorithm



we chose two sliding windows, respectively representing the older and the most recent sample.

Experiments and Results

A. Data Collection

a) Synthetic Datasets

Datasets	Z	ld
Syn-one	$1.8 \rightarrow 1.8 \rightarrow 1.8 \rightarrow 1.8$	0%→10%→0%→20%
Syn-two	$1.8 \rightarrow 3.0 \rightarrow 2.5 \rightarrow 4.5$	0%→0%→0%→0%
Syn-three	$1.8 \rightarrow 1.8 \rightarrow 3.5 \rightarrow 3.5$	0%→10%→0%→20%

They all contain three concept drifts and consist of 100,000 samples.

b) Real-world Datasets

Dataset	N	L	A	Z	LDens
tmc2007-500	28596	22	500	2.16	0.10
20NG	19300	20	1001	1.03	0.05

- > B. Evaluation Measures
- a) Hamming-accuracy

Hamming - accuracy =
$$\frac{1}{NL} \sum_{i=1}^{N} \sum_{j=1}^{L} I(y_i^{(j)} = \hat{y}_i^{(j)})$$

b) Subset Accuracy

$$SubsetAccuracy = \frac{1}{N} \sum_{i=1}^{N} \frac{\sum_{j=1}^{L} y_i^{(j)} \wedge \widehat{y}_i^{(j)}}{\sum_{j=1}^{L} y_i^{(j)} \vee \widehat{y}_i^{(j)}}$$

c) F1-macro

$$F1 - macro = \frac{1}{L} \sum_{j=1}^{L} F1 \Big[\Big(y_1^{(j)}, \dots, y_N^{(j)} \Big), \Big(\widehat{y}_1^{(j)}, \dots, \widehat{y}_N^{(j)} \Big) \Big]$$

> C. Experiment Design

a) Verification of the label dependence's availability
DD with Case1: No Grouping on Labels;
DD with Case2: Call GL1();
DD with Case3: Call GL2().

b) Contrastive experiments with other methods

Method1: weight by the classification accuracy [1] *Method2*: weight against the classification accuracy [2] *Method3*: weight decay along with the incorrect classification [3]

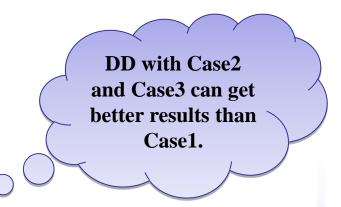
> D. Experimental Results and Discussion

a) The results for the verification experiments

The experimental results of Drift Detection with Case1, Case2 and Case3 over the dataset Syn-one

Measures	Methods	The Minimum Support		
wieasures	Methous	min = 0.1	min = 0.05	
Subset	DD with Case1	0.3081±0.0366	0.3081±0.0366	
Accuracy	DD with Case2	0.3206±0.0372	0.3326±0.0410	
F1-macro	DD with Case1	0.2687±0.0419	0.2687±0.0419	
	DD with Case2	0.2855±0.0397	0.3031±0.0505	

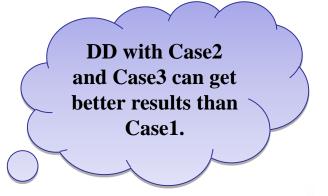
Measures	Methods	The Number of Clusters			
wieasures	Methous	K = 3	K = 4	K = 5	
Subset	DD with Case1	0.3081±0.0366	0.3081±0.0366	0.3081±0.0366	
Accuracy	DD with Case3	0.3263±0.0395	0.3257±0.0292	0.3203±0.0352	
F1	DD with Case1	0.2687±0.0419	0.2687±0.0419	0.2687±0.0419	
F1-macro	DD with Case3	0.2883±0.0509	0.2935±0.0383	0.2825±0.0411	



The experimental results of Drift detection with Case1, Case2 and Case3 over the dataset Syn-three

0

Measures	Methods	The Minimum Support		
wieasures	Methous	min = 0.1	min = 0.05	
Subset	DD with Case1	0.3256±0.0256	0.3256±0.0256	
Accuracy	DD with Case2	0.3408±0.0308	03438±0.0320	
F1-macro	DD with Case1	0.2743±0.0364	0.2743±0.0364	
	DD with Case2	0.3007±0.0367	0.2956±0.0367	

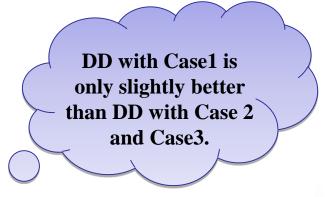


Measures	Methods	The Number of Clusters			
wieasures	Methous	K = 3	K = 4	K = 5	
Subset	DD with Case1	0.3256±0.0256	0.3256±0.0256	0.3256±0.0256	
Accuracy	DD with Case3	0.3384±0.0263	0.3525±0.0289	0.3301±0.0321	
F1	DD with Case1	0.2743±0.0364	0.2743±0.0364	0.2743±0.0364	
F1-macro	DD with Case3	0.2887±0.0278	0.3021±0.0300	0.2775±0.0371	

The experimental results of Drift detection with Case1, Case2 and Case3 over the dataset Syn-two

0

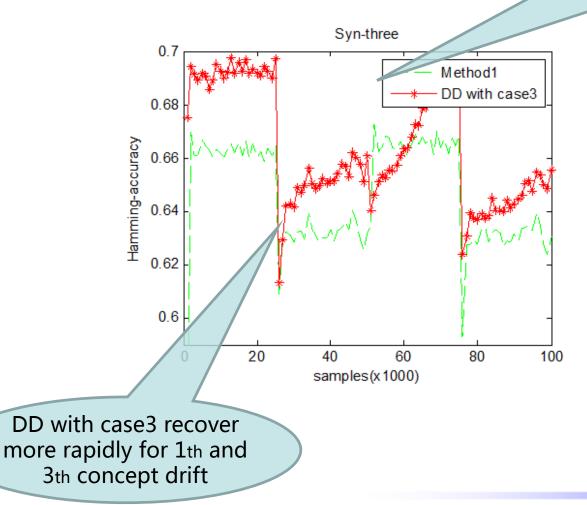
Measures	Methods	The Minimum Support		
Wiedsures	Methous	$\min = 0.1$	min = 0.05	
Subset	DD with Case1	0.3794±0.0276	0.3794±0.0276	
Accuracy	DD with Case2	0.3743±0.0281	0.3766±0.0314	
E1	DD with Case1	0.3225±0.0371	0.3225±0.0371	
F1-macro	DD with Case2	0.3123±0.0371	0.3172±0.0334	



Measures	Methods	The Number of Clusters			
wiedsuies	wienious	K = 3	K = 4	K = 5	
Subset	DD with Case1	0.3794±0.0276	0.3794±0.0276	0.3794±0.0276	
Accuracy	DD with Case3	0.3752±0.0395	0.3779±0.0354	0.3763±0.0345	
F1	DD with Case1	0.3225±0.0371	0.3225±0.0371	0.3225±0.0371	
F1-macro	DD with Case3	0.3155±0.0469	0.3211±0.0462	0.3160±0.0384	

b) The results for the verification experiments

DD with case3 make reaction for these concept drifts at 25, 50 and 75



Methods	Synthetic Datasets				
wiethous	Syn-one	Syn-two	Syn-three		
Method1	0.6430±0.0216	0.6484±0.0226	0.6389±0.0239		
Method2	0.6528±0.0448	0.6573±0.0254	0.6551±0.0254		
Method3	0.6382±0.0380	0.6464±0.0371	0.6391±0.0417		
DD with case3	0.6546±0.0222	0.6621±0.0212	0.6572±0.0226		

From the table: DD with case3 achieves high predictive performance compared with these three baseline methods.

Results on 20NG

	Measures				
Methods	Hamming- accuracy	Subset Accuracy	F1_macro		
Method1	0.7878	0.2361	0.3039		
Method2	0.8080	0.2580	0.3085		
Method3	0.9220	0.3215	0.3728		
DD with case3	0.9447	0.3598	0.3903		

DD with case3 performs outstandingly, compared with Method1, Method2 and Method3.

Results on tmc2007-500

	Real World Datasets				
Methods	Hamming- accuracy	Subset Accuracy	F1_macro		
Method1	0.8150	0.3334	0.4007		
Method2	0.8224	0.3737	0.4186		
Method3	0.9001	0.4087	0.4378		
DD with case3	0.9143	0.4303	0.4676		

Conclusion

Conclusion :

In this paper we have analyzed the unique properties of drift detection for multi-label data streams and proposed a drift detection method based on label grouping and entropy.

We instantiate the label grouping with the *Apriori* and *EM* algorithm. The verification and contrastive experiments all show that the proposed method is promising.

Future work :

We will attempt to integrate the proposed method of drift detection with *Hoeffding Tree* algorithm to deal with multi-label evolving stream classification problem.

Acknowledgement

Special Thanks to :

Prof. Yi-min Wen

Thanks to Projects:

- Guangxi Key Laboratory of Trusted Software
- Innovation Project of GUET Graduate Education
- National Natural Science Foundation of China
- Science and Technology Plan Project of Hunan Province

Thanks to Source Software:

The open source software development kit WEKA^[4] and MOA^[5]

References

- [1] W. Qu, Y. Zhang, J. P. Zhu and Y. Wang. "Mining Multi-label Concept-Drifting Streams Using Ensemble Classifiers,"
- [2] D. Brzeziński, J. Stefanowski. "Accuracy updated ensemble for data streams with concept drift,"
- [3] A. Bifet, G. Holmes, R. Kirkby and B. Pfahringer. "Moa: Massive online analysis,"
- [4] http://www.cs.waikato.ac.nz/ml/index.html

[5] http://moa.cs.waikato.ac.nz/

Thanks for Your Attention

Question ?