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In many emerging applications, each sample may be associated with 
more than one label and the correlation between class labels may 
change over time.
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Introduction



 dependencies between labels

 the correlation relationship 
between labels and the 
distribution between features 
and multiple labels
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co-occurrences of music labeled with emotions



The Drift Detection Method

Grouping on Labels Calculating Entropy
Drift Detection 

Algorithm
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 A. Grouping on Labels
a).  Algorithm 1: GL1()

It employs the Apriori algorithm to mine the frequent label sets and the 
basic motivation is the existence of  co-occurrence between labels. 
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quiet

Call Apriori Algorithm

Minimum Support = 2
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b).  Algorithm 2: GL2()

It mines the dependencies 
between labels by the clustering 
method and it can be 
instantiated with the k-means 
and EM algorithm. 

Motivation: Clustering can place 
the similar and interdependent 
objects together and dissimilar 
and independent apart. 
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 B. Calculating Entropy

Piskb represents the probability of a sample belongs to the kth label 
subset, with feature domain s in b at time ti .
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 C. Drift Detection Algorithm

we chose two sliding windows, respectively representing the older and the

most recent sample.
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Experiments and Results
 A. Data Collection

a) Synthetic Datasets

They all contain three concept drifts and consist of 100,000 samples.

b) Real-world Datasets
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Datasets Z ld

Syn-one 1.81.81.81.8 0%10%0%20%

Syn-two 1.83.02.54.5 0%0%0%0%

Syn-three 1.81.83.53.5 0%10%0%20%

Dataset N L A Z LDens

tmc2007-500 28596 22 500 2.16 0.10

20NG 19300 20 1001 1.03 0.05



 B. Evaluation Measures

a) Hamming-accuracy

b) Subset Accuracy

c) F1-macro
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 C. Experiment Design

a) Verification of the label dependence’s availability     

DD with Case1:   No Grouping on Labels; 

DD with Case2:    Call GL1();

DD with Case3:    Call GL2().

b) Contrastive experiments with other methods

Method1:   weight by the classification accuracy [1]

Method2:    weight against the classification accuracy [2]

Method3:   weight decay along with the incorrect classification [3]
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 D. Experimental Results and Discussion

a) The results for the verification experiments    

The experimental results of Drift Detection with Case1, Case2 and Case3 over

the dataset Syn-one

DD with Case2 

and Case3 can get 

better results than 

Case1.
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Measures Methods
The Minimum Support

min = 0.1 min = 0.05

Subset 

Accuracy

DD with 
Case1 0.30810.0366 0.30810.0366

DD with 
Case2 0.32060.0372 0.33260.0410

F1-macro

DD with 
Case1 0.26870.0419 0.26870.0419

DD with 
Case2 0.28550.0397 0.30310.0505 

Measures Methods
The Number of Clusters

K = 3 K = 4 K = 5

Subset 

Accuracy

DD with 
Case1 0.30810.0366 0.30810.0366 0.30810.0366

DD with 
Case3 0.32630.0395 0.32570.0292 0.32030.0352 

F1-macro

DD with 
Case1 0.26870.0419 0.26870.0419 0.26870.0419

DD with 
Case3 0.28830.0509 0.29350.0383 0.28250.0411 



The experimental results of Drift detection with Case1, Case2 and Case3 over

the dataset Syn-three

DD with Case2 

and Case3 can get 

better results than 

Case1.
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Measures Methods
The Minimum Support

min = 0.1 min = 0.05

Subset 

Accuracy

DD with 
Case1 0.32560.0256 0.32560.0256

DD with 
Case2 0.34080.0308 034380.0320 

F1-macro

DD with 
Case1 0.27430.0364 0.27430.0364

DD with 
Case2 0.30070.0367 0.29560.0367

Measures Methods
The Number of Clusters

K = 3 K = 4 K = 5

Subset 

Accuracy

DD with 
Case1 0.32560.0256 0.32560.0256 0.32560.0256

DD with 
Case3 0.33840.0263 0.35250.0289 0.33010.0321

F1-macro

DD with 
Case1 0.27430.0364 0.27430.0364 0.27430.0364

DD with 
Case3 0.28870.0278 0.30210.0300 0.27750.0371 



The experimental results of Drift detection with Case1, Case2 and Case3 over

the dataset Syn-two

DD with Case1 is 

only slightly better 

than DD with Case 2 

and Case3.
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Measures Methods
The Minimum Support

min = 0.1 min = 0.05

Subset 

Accuracy

DD with 
Case1 0.37940.0276 0.37940.0276

DD with 
Case2 0.37430.0281 0.37660.0314

F1-macro

DD with 
Case1 0.32250.0371 0.32250.0371

DD with 
Case2 0.31230.0371 0.31720.0334

Measures Methods
The Number of Clusters

K = 3 K = 4 K = 5

Subset 

Accuracy

DD with 
Case1 0.37940.0276 0.37940.0276 0.37940.0276

DD with 
Case3 0.37520.0395 0.37790.0354 0.37630.0345 

F1-macro

DD with 
Case1 0.32250.0371 0.32250.0371 0.32250.0371

DD with 
Case3 0.31550.0469 0.32110.0462 0.31600.0384



b) The results for the verification experiments
DD with case3 make 

reaction for these concept 
drifts at 25, 50 and 75

DD with case3 recover 
more rapidly for 1th and 

3th concept drift 
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From the table: DD with case3 achieves high predictive performance compared 
with these three baseline methods.
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Methods
Synthetic Datasets

Syn-one Syn-two Syn-three

Method1 0.64300.0216 0.64840.0226 0.63890.0239

Method2 0.65280.0448 0.65730.0254 0.65510.0254

Method3 0.63820.0380 0.64640.0371 0.63910.0417

DD with case3 0.65460.0222 0.66210.0212 0.65720.0226



DD with case3 performs 
outstandingly, 

compared with Method1, 
Method2 and Method3.
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Results on 20NG

Results on tmc2007-500

Methods

Measures

Hamming-

accuracy
Subset Accuracy F1_macro

Method1 0.7878 0.2361 0.3039

Method2 0.8080 0.2580 0.3085

Method3 0.9220 0.3215 0.3728

DD with 

case3
0.9447 0.3598 0.3903

Methods

Real World Datasets

Hamming-

accuracy
Subset Accuracy F1_macro

Method1 0.8150 0.3334 0.4007

Method2 0.8224 0.3737 0.4186

Method3 0.9001 0.4087 0.4378

DD with 

case3
0.9143 0.4303 0.4676



Conclusion
 Conclusion：

In this paper we have analyzed the unique properties of drift detection
for multi-label data streams and proposed a drift detection method based
on label grouping and entropy.

We instantiate the label grouping with the Apriori and EM algorithm.
The verification and contrastive experiments all show that the proposed
method is promising.

 Future work：

We will attempt to integrate the proposed method of drift detection with
Hoeffding Tree algorithm to deal with multi-label evolving stream
classification problem.
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