
    

Information Technology

Efficient Anomaly Detection  
by 

Isolation using Nearest Neighbour Ensemble

Tharindu Rukshan Bandaragoda 

Kai Ming Ting 

David Albrecht 

  Fei Tony Liu 

Jonathan R. Wells 



2

Outline  

▪Overview of anomaly detection 

▪Existing methods 

▪Motivation  

▪ iNNE 

▪Empirical evaluation 






3

▪Properties of anomalies 

– Not conforming to the norm in a dataset 
– Rare and different from others 


▪Applications: 

– Intrusion detection in computer networks 
– Credit card fraud detection 
– Disturbance detection in natural systems (e.g., hurricane) 


▪Challenges 

– Datasets becoming larger : need efficient methods 
– Datasets increasing in dimensions : need methods effective in 

high-dimensional scenarios

Anomaly Detection 



Existing methods
▪Clustering based methods 

– Instances that do not belong to any cluster are anomalies 
– Some measures used: 

• Membership of a cluster (Ester et al., 1996) 
• Distance from closest cluster centroid 
• Ratio between distance to cluster centroid and cluster size 

(He et al., 2003) 
– Issues 

• Computationally expensive: O(n2)  or higher 
• Do not provide a score to determine the granularity of  an 

anomaly (strong or weak anomaly)
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Existing methods
▪Distance/density based methods 

– Instances having far neighbours are anomalies 
– Some measures used : 

• kth-nearest neighbour distance (Ramaswamy et al., 2000) 

• Average distance of k-nearest neighbours (Angiulli et al., 
2002)  

• Number of instances inside an r radius hypersphere (Ren et 
al., 2004) 


– Issues 
• Nearest neighbour search is expensive 

– O(n2)  time complexity 
• Insensitive to locality and thus fail to detect local anomalies
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Existing methods
▪Relative density based methods 

– Instances having lower density than its neighbourhood are 
anomalies 


– Measure the ratio between density of a data point and average 
density of its neighbourhood 


– k-nearest neighbour distance (Breunig et al., 2000)  or number of 
instances in r-radius neighbourhood (Papadimitriou et al., 2003) 
are used as proxies to density. 


– Issues 

• Nearest neighbour search is expensive 
– O(n2) time complexity
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Existing methods
▪Isolation based methods 

– Attempt to isolate anomalies from others 
– Exploit anomalous properties of being few and different 


– iForest (Liu et al., 2008) 
• Partition feature space using axis-parallel subdivisions 
• Instances isolated earlier are anomalies 
• Build an ensemble of binary trees from randomly selected 

samples 
• Extremely efficient : O(ntψ) where t is ensemble size and ψ 

is subsample size 
• Effective in detection global anomalies of  low dimensional 

datasets
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Motivation
▪iForest is a highly efficient method 

– Can scale up to very large datasets 
▪It fails in some scenarios such as: 

– Local anomaly detection 
– Anomaly detection in noisy datasets 
– Axis parallel masking 


▪Hypothesis : weaknesses of iForest occurs due to its 
isolation mechanism  

▪Solution : use a better isolation mechanism to overcome the 
weaknesses
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iNNE
▪iNNE : isolation using Nearest Neighbour Ensembles 


▪Features: 

– Overcome the identified weaknesses of iForest 

– Retain the efficiency of iForest  and scale up to very 

large datasets 

– Perform competitively with existing methods
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Intuition
▪Anomalies are expected to be far from its Nearest Neighbours 

▪ Isolation can be performed by creating a region around an 
instance to isolate it from other instances 

– Large regions in sparse areas  
– Small regions in dense areas 

▪Radius of the region is a measure of isolation 
▪Radius of the region relative to neighbouring region is a measure 

of relative-isolation 
▪Points that fall into regions with a high relative-isolation are 

anomalies   
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Local Regions
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Isolation Score         
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Isolation Score         


▪Based on  

▪ Isolation score I(x) for x 
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– Isolation score based on  
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– Ds 
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Anomaly score
– Average of isolation scores over an ensemble of size t 




– Instances with high anomaly score are likely to be anomalies 


– Accuracy of the anomaly score improve with t 
• t = 100 is sufficient  


– Sample size is a parameter setting 

• Similar to k in k-NN based methods 
• Empirical results show that the required sample size is usually 

in the range 2 - 128   
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Example
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▪Xa get the maximum anomaly score 

–  I(Xa) = 1 


▪Xb and Xc get lower anomaly scores 






      



Time and space complexity 
▪Time complexity  

– Training stage: O(t Ψ2), t = ensemble size, Ψ = sample size 

– Evaluation stage: O(nt Ψ), n = data size 

– t and Ψ are constants for iNNE, t << n and Ψ << n 
     (Default values: t = 100 and Ψ in the range 2 to 128) 
– Thus time complexity of iNNE is linear with n  


▪Space complexity  
– Only need to store the sets of hyperspheres 
– Hence has a constant space complexity: O(t Ψ)
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iNNE : Advantages over iForest


– Adapts well to local distribution better than axis-
parallel subdivision  


– Uses all the available attributes to partition data 
space into regions 


– Isolation score is a local measure, which is defined 
relative to the local neighbourhood
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Comparison with LOF
▪ Similarities 

– Employ NN distance  
– Score based on relative measure to local-neighbourhood 


▪ Differences : O(n) versus O(n2) 

– iNNE : An ensemble based eager learner 
– LOF: Lazy learner 


– iNNE: Partition the space in to regions based on NN distance 
• Does not  relies on the accuracy of underlying k-NN density estimator 


– LOF: Estimates the relative-density based on k-NN distance 
• Heavily relies on the accuracy of underlying k-NN density estimator 
• Hence, ensemble version of LOF (Zimek et al., 2013) requires a larger 

sample size than iNNE
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Detection of local anomalies  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Resilient to low relevant dimensions


▪ 1000 dimensional dataset used, while changing percentage of relevant 
dimensions from 1% to 30% 

▪ Irrelevant dimensions have random noise 

▪ iNNE is more resilient than iForest



Axis parallel masking 


▪ iNNE produces better contour maps of anomaly scores, tightly fitted to 

the data distribution 







• Spiral dataset with 4000 normal instances (blue cross) and 6 anomaly instances 

(red diamond) 

• iNNE:  AUC = 1:00, Anomaly Ranking: 1 - 6 

• iForest :   AUC = 0:86, Anomaly Ranking: 75, 320, 345, 354, 563, 1802
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Dataset iForest iNNE



Isolation-based anomaly detection: A re-examination

Scaleup test: Increasing size of dataset
▪Compared execution time against iForest , LOF and ORCA 

▪5 dimensional datasets are used with increasing size 

▪ iNNE can efficiently scale up to very large datasets 

▪For a 10-million dataset 

iForest : 9 m 
iNNE : 1 h 40 m 
LOF: 220 d (projected) 
LOFIndexed: 7 h 30 m 
ORCA: 15 d (projected)
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LOFIndexed = LOF with 

R*-Tree indexing



Scaleup test: Increasing dimensions of dataset
▪Compared execution time against LOF and ORCA 

▪100,000 instance datasets are used with increasing dimensions 

▪For 1000-dimension dataset 

iNNE(Ψ = 2): 14m 
iNNE(Ψ = 32): 3 h 40 m 
LOF: 12h 50m  
LOFIndexed: 15h 


▪ iNNE efficiently scales up to  

     high dimensional datasets 

▪ An indexing scheme becomes  

     more expensive in high dimensions
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Performance in Benchmark datasets
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Summary  

▪ iNNE performs isolation by creating local regions based on the NN 

distance 

▪ It overcomes the identified weaknesses of iForest to detect 

– local anomalies 
– anomalies with low relevant dimensions 
– anomalies masked by axis parallel normal clusters 

▪Has a linear time complexity with data size, thus can scaleup efficiently 

▪Efficiency does not degrade with the increase of dimensions
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Thank you !!!

Any Questions ?
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