

Incrementally Optimizing AUC

Zhi-Hua Zhou

http://cs.nju.edu.cn/zhouzh/ Email: zhouzh@nju.edu.cn

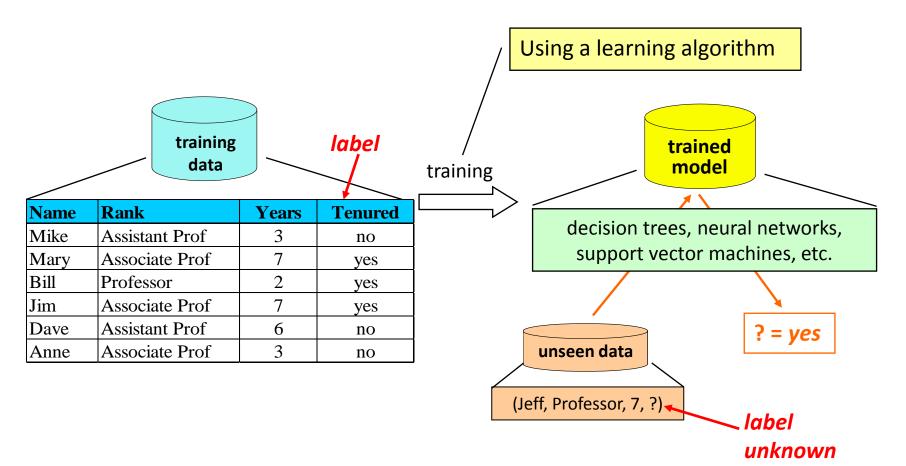
LAMDA Group National Key Laboratory for Novel Software Technology, Nanjing University, China

The Big Data Era

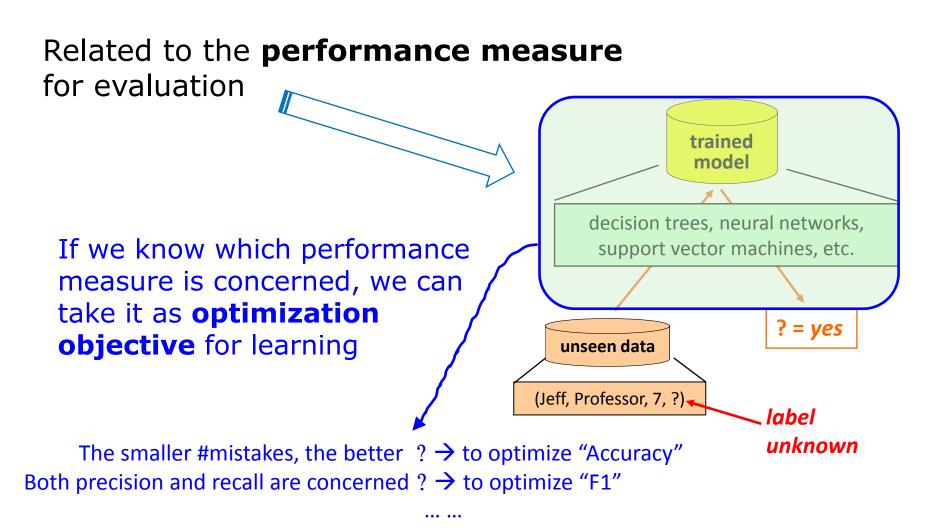
What are New Aspects?

Today I will talk about one issue ...

See discussion in: Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams. <u>Big data</u> <u>opportunities and challenges: Discussions from data analytics</u> <u>perspectives</u>. **IEEE Computational Intelligence Magazine**, 9(4): 62-74, November 2014.



What model is good?



Typically, we collect all training data, then do optimization

Now the data become bigger

Unwise to "Get all data, then optimize"

What can we do ?

Incremental learning ! But ...

Some performance measures are with good properties, easier to optimize, e.g.,

Accuracy:

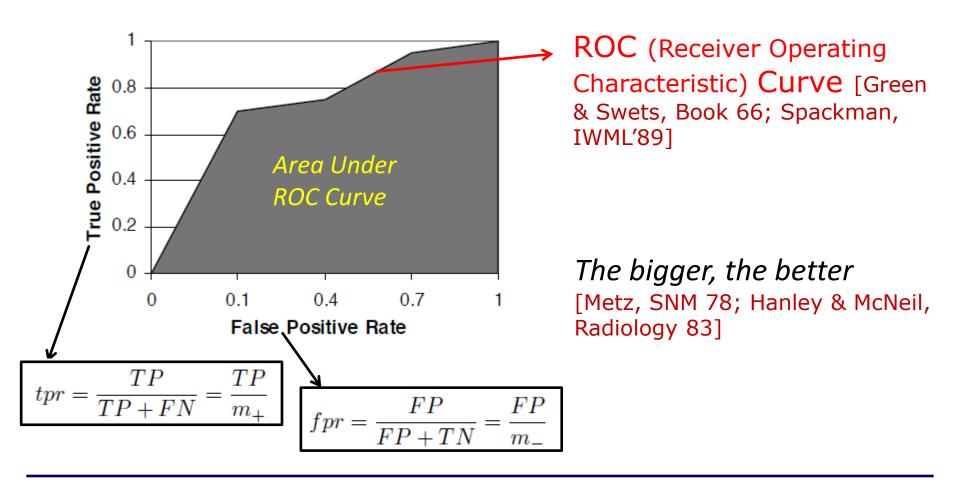
It is **decomposable** over examples

 $\frac{1}{m}\sum_{i=1}^{m}\mathbb{I}(y_i = f(\boldsymbol{x}_i)) \quad \begin{array}{l} \text{Convex surrogate losses (hinge loss, exponential loss) make the optimization easier} \end{array}$

However, many other important performance measures, e.g.,

```
F1-score, PRBEP, MAP, AUC ...
   non-decomposable, non-linear, non-smooth, non-convex, ...
   Quite challenging
                        We focus on AUC as an example
```


AUC: Area Under the ROC Curve



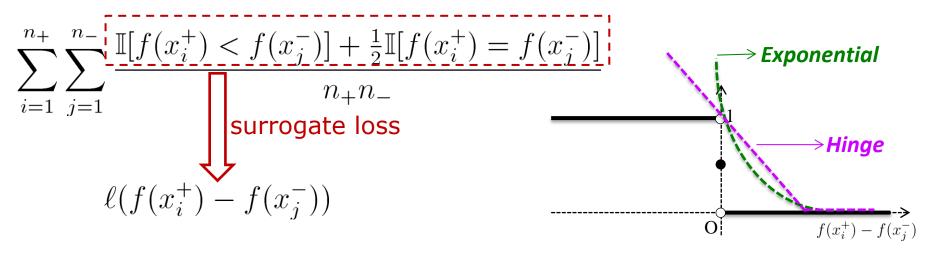
- ranking positive instances higher than negative ones
- insensitive to class distribution
- independent to classification threshold

Widely used in various learning tasks, e.g.:

- ✓ Learning to Rank
- ✓ Class-imbalanced learning
- ✓ Cost-sensitive learning

✓ ...

For function f and sample $S = \{(x_1^+, +1) \dots (x_{n_+}^+, +1), (x_1^-, -1) \dots (x_{n_-}^-, -1)\}$ AUC is given by



Exponential [Freund et al., JMLR03; Rudin & Schapire JMLR09] Hinge [Joachims, KDD'06]

Pairwise loss

requires to store all data, and scan data many times

A natural idea: Online learning, stochastic gradient descent

easier for univariate losses (e.g., univariate Hinge loss, univariate exponential loss, univariate least square loss, etc.), **however, the performance is worse** (will show in exps)

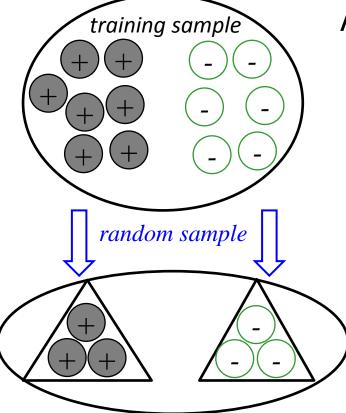
Pairwise loss: To encourage $f(\boldsymbol{x}_i^+) > f(\boldsymbol{x}_j^-)$

Univariate loss: To encourage $f(\boldsymbol{x}_i^+) > 0, f(\boldsymbol{x}_i^-) < 0$

univariate losses enforce unnecessary constraints

What can we do with pairwise loss?

To overcome the obstacle of pairwise calculation involving all data



A simple idea: To use a buffer

By using pairwise hinge loss, online AUC optimization with a buffer size $O(\sqrt{n_++n_-})$

[Zhao et al., ICML' 11]

Scan the buffer many times; buffer size dependent to data size

Current approaches:

Either: i) store all data, ii) scan all data many times

Or: i) buffer dependent to data size, ii) Scan buffer many times

Deficiencies, e.g.:

- For big data, buffer size will be big
- For streaming data, we do not know how many instances we will receive, and thus difficult to decide the buffer size

Can we have "One-Pass" approach:

- ✓ scan data only once
- ✓ storage not dependent to data size

1 We prove: Least square loss is consistent with AUC

2 We derive: Two statistics are sufficient for AUC opt.

3 We present: The OPAUC approach

Thm For finite instance space and least square loss $\ell(t) = (1-t)^2$, the surrogate loss $\Psi(f, x, x') = \ell(f(x) - f(x'))$ is consistent with AUC

Proof Outline: For $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ with margin probability p_i and conditional probability $\xi_i = \Pr[y_i = 1 | x_i]$

• Our goal is to minimize the expected risk

$$R_{\Psi}(f) = C_0 + \sum_{i \neq j} p_i p_j \left(\xi_i (1 - \xi_j) \ell(f(\mathbf{x}_i) - f(\mathbf{x}_j)) + \xi_j (1 - \xi_i) \ell(f(\mathbf{x}_j) - f(\mathbf{x}_i))\right)$$

• Based on sub-gradient conditions, we obtain *n* linear equations

$$\sum_{k \neq i} p_k(\xi_i + \xi_k - 2\xi_i\xi_k)(f(\mathbf{x}_i) - f(\mathbf{x}_k)) = \sum_{k \neq i} p_k(\xi_i - \xi_k) \text{ for each } 1 \le i \le n$$

• Solving those linear equations, we get a Bayes solution

$$f(\mathbf{x}_{i}) - f(\mathbf{x}_{j}) = (\xi_{i} - \xi_{j}) \frac{\prod_{k \neq i, j} \sum_{l=1}^{n} p_{l}(\xi_{l} + \xi_{k} - 2\xi_{l}\xi_{k})}{\sum_{\substack{s_{i} \geq 0 \\ s_{1} + \dots + s_{n} = n-2}} p_{1}^{s_{1}} \cdots p_{n}^{s_{n}} \Gamma(s_{1}, s_{2}, \cdots, s_{n})}$$

where $\Gamma > 0$ is a polynomial in $(\xi_l + \xi_k - 2\xi_l\xi_k)$

In each iteration, we receive a training example (x_t, y_t) , and aim to optimize the least square loss $\mathcal{L}_t(w) = \frac{\lambda}{2}|w|^2 + \frac{\sum_{i=1}^{t-1}\mathbb{I}[y_i \neq y_t](1 - y_t(x_t - x_i)^\top w)^2}{2|\{i \in [t-1]: y_i y_t = -1\}|}$

For stochastic gradient descent

$$w_{t+1} = w_t - \eta_t \nabla \mathcal{L}_t(w_t)$$

it is sufficient to calculate the gradient $\nabla \mathcal{L}_t(w_t)$

If $y_t = +1$ (similarly for $y_t = -1$), we have the gradient:

$$\nabla \mathcal{L}_{t}(w) = \lambda w - x_{t} + \sum_{\substack{i: \ y_{i} = -1 \\ \text{neg. mean}}} \frac{x_{i}}{n_{t}^{-}} + \left(x_{t} - \sum_{\substack{i: \ y_{i} = -1 \\ \text{neg. mean}}} \frac{x_{i}}{n_{t}^{-}}\right) \left(x_{t} - \sum_{\substack{i: \ y_{i} = -1 \\ \text{neg. mean}}} \frac{x_{i}}{n_{t}^{-}}\right)^{+} w$$

$$+ \left(\sum_{\substack{i: \ y_{i} = -1 \\ n_{t}^{-}}} \frac{x_{i}x_{i}^{\top}}{n_{t}^{-}} - \sum_{\substack{i: \ y_{i} = -1 \\ n_{t}^{-}}} \frac{x_{i}}{n_{t}^{-}} \left(\sum_{\substack{i: \ y_{i} = -1 \\ n_{t}^{-}}} \frac{x_{i}}{n_{t}^{-}}\right)^{\top}\right) w$$
neg. covariance

Store the mean and covariance are sufficient !

Simple algebraic calculation for updating mean and covariance <u>Mean</u>: One vector addition $c_t^+ = (1 - 1/T_t^+)c_{t-1}^+ + x_t/T_t^+$ <u>Covariance</u>: Four matrices additions

$$S_t^+ = (1 - 1/T_t^+)S_{t-1}^+ + x_t x_t^\top / T_t^+ + c_{t-1}^+ [c_{t-1}^+]^\top - c_t^+ [c_t^+]^\top$$

Algorithm 1 The OPAUC Algorithm

Input: The regularization parameter $\lambda > 0$ and stepsizes $\{\eta_t\}_{t=1}^{n_++n_-}$ Initialization: Set $w_0 = 0$, $c_0^+ = c_0^- = 0$ and $S_0^+ = S_0^- = [0]_{d \times d}$ for $t = 1, 2, \ldots, n_+ + n_-$ do Receive a training example (\mathbf{x}_t, y_t) $_{a}O(d \times d)$ if $y_t = +1$ then $_{\pi}O(d)$ Update the mean and covariance matrices of positive instances Calculate the gradient $\nabla \mathcal{L}_t(\mathbf{w}_{t-1})$ from Eq. (4) ____ O(d×d) $\pi O(d)$ else Update the mean and covariance matrices of negative instances Calculate the gradient $\nabla \mathcal{L}_t(\mathbf{w}_{t-1})$ from Eq. (5) end if $\mathbf{w}_t = \mathbf{w}_{t-1} - \eta_t \nabla \mathcal{L}_t(\mathbf{w}_{t-1})$ end for

Storage: $O(d \times d)$, independent to data size Scan data only once How to handle large d?

[Gao & Zhou, ICML'13]

http://cs.nju.edu.cn/zhouzh/

Inspired by **random projection**

A straightforward idea:

- i) high-dim. data <u>rand. proj.</u> low-dim. data
- ii) apply OPAUC on the low-dim. data

Our approach

$$\begin{pmatrix} \star & \cdots & \star \\ \vdots & d \times d & \vdots \\ \star & \cdots & \star \end{pmatrix} = \begin{pmatrix} \bigtriangleup & \cdots & \bigtriangleup \\ \vdots & d \times n_t^+ & \vdots \\ \bigtriangleup & \cdots & \bigtriangleup \end{pmatrix} \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & n_t^+ \times n_t^+ & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \bigtriangleup & \cdots & \bigtriangleup \\ \vdots & n_t^+ \times \tau & \vdots \\ \otimes & \cdots & \bigotimes \end{pmatrix} \begin{pmatrix} \otimes & \cdots & \otimes \\ \vdots & n_t^+ \times \tau & \vdots \\ \otimes & \cdots & \bigotimes \end{pmatrix} \begin{pmatrix} \otimes & \cdots & \otimes \\ \vdots & n_t^+ \times \tau & \vdots \\ \otimes & \cdots & \bigotimes \end{pmatrix}^{\mathsf{T}} \qquad \bigotimes \sim \mathsf{N}(0,1) \\ \tau \text{ is small}$$
$$\begin{pmatrix} \star & \cdots & \star \\ \vdots & d \times d & \vdots \\ \star & \cdots & \star \end{pmatrix} \approx \begin{pmatrix} \ast & \cdots & \ast \\ \vdots & d \times \tau & \vdots \\ \ast & \cdots & \ast \end{pmatrix} \begin{pmatrix} \ast & \cdots & \ast \\ \vdots & d \times \tau & \vdots \\ \ast & \cdots & \ast \end{pmatrix} \begin{pmatrix} \ast & \cdots & \ast \\ \vdots & d \times \tau & \vdots \\ \ast & \cdots & \ast \end{pmatrix}^{\mathsf{T}} \qquad \mathsf{Low-rank approx.}$$

Our theoretic analysis disclosed:

- For OPAUC (full covariance)
 - separable case: O(1/T) $(T = n_+ + n_-)$
 - non-separable case: $O(1/\sqrt{T})$
- ➢ For OPAUC_r (approximated covariance)
 - separable case: O(1/T)
 - non-separable case: $O(1/\sqrt{T})$ + small constant

In contrast, previous approaches:

- Best convergence rate is at most $O(1/\sqrt{T})$ [Zhao et al., ICML'11]
- Dependent to $\frac{n_+}{n_-}$

Benchmark data sets

datasets	#inst	#feat	datasets	# inst	#feat
diabetes	768	8	w8a	49,749	300
fourclass	862	2	kddcup04	50,000	65
german	1,000	24	mnist	60,000	780
splice	3,175	60	connect-4	67,557	126
usps	9,298	256	acoustic	78,823	50
letter	15,000	16	ijcnn1	141,691	22
magic04	19,020	10	epsilon	400,000	2,000
a9a	32,561	123	covtype	581,012	54

Online methods:

- **OAMseq:** pairwise hinge loss, sequential update, buffer size 100 [Zhao et al., ICML'11]
- **OAMgra:** pairwise hinge loss, gradient update, buffer size 100 [Zhao et al., ICML'11]

Batch methods:

- **SVM-perf:** structure SVM [Joachims, ICML'05]
- **SVM-OR:** pairwise hinge loss [Joachims, KDD'06]
- Uni-Log: univariate logistic loss [Kotlowski et al., ICML'11]

Results: Existing online methods

datasets	OPAUC	$\mathrm{OAM}_{\mathtt{seq}}$	OAM_{gra}
diabetes	$.8309 \pm .0350$	$.8264 \pm .0367$	$.8262 \pm .0338$
fourclass	$.8310 {\pm} .0251$	$.8306 \pm .0247$	$.8295 \pm .0251$
german	$.7978 \pm .0347$.7747±.0411●	.7723±.0358•
splice	$.9232 \pm .0099$.8594±.0194●	.8864±.0166•
usps	$.9620 \pm .0040$	$.9310 \pm .0159 \bullet$.9348±.0122●
letter	$.8114 \pm .0065$	$.7549 \pm .0344 \bullet$.7603±.0346●
magic04	$.8383 \pm .0077$.8238±.0146●	.8259±.0169●
a9a	$.9002 \pm .0047$	$.8420 \pm .0174 \bullet$.8571±.0173•
w8a	$.9633 \pm .0035$.9304±.0074●	.9418±.0070●
kddcup04	$.7912 \pm .0039$.6918±.0412●	.7097±.0420●
mnist	$.9242 \pm .0021$	$.8615 \pm .0087 \bullet$.8643±.0112●
connect-4	$.8760 \pm .0023$	$.7807 \pm .0258 \bullet$.8128±.0230•
acoustic	$.8192 \pm .0032$.7113±.0590●	.7711±.0217•
ijcnn1	$.9269 \pm .0021$.9209±.0079●	.9100±.0092●
epsilon	$.9550 \pm .0007$	$.8816 \pm .0042 \bullet$.8659±.0176●
covtype	$.8244 \pm .0014$	$.7361 \pm .0317 \bullet$.7403±.0289●
win	/tie/loss	14/2/0	14/2/0

OPAUC significantly better

Results: Existing batch methods

datasets	OPAUC	SVM-perf	batch SVM-OR	batch Uni-Log
diabetes	$.8309 \pm .0350$	$.8325 \pm .0220$	$.8326 \pm .0328$	$.8330 {\pm} .0322$
fourclass	$.8310 \pm .0251$	$.8221 \pm .0381$	$.8305 \pm .0311$	$.8288 \pm .0307$
german	$.7978 \pm .0347$	$.7952 \pm .0340$	$.7935 \pm .0348$	$.7995 \pm .0344$
splice	$.9232 \pm .0099$	$.9235 \pm .0091$	$.9239 \pm .0089$.9208±.0107●
usps	$.9620 \pm .0040$	$.9600 \pm .0054 \bullet$	$.9630 \pm .0047 \circ$	$.9637 \pm .0041 \circ$
letter	$.8114 \pm .0065$	$.8028 \pm .0074 \bullet$.8144±.0064°	$.8121 \pm .0061$
magic04	$.8383 \pm .0077$	$.8427 \pm .0078 \circ$	$.8426 \pm .0074$ \circ	$.8378 \pm .0073$
a9a	$.9002 \pm .0047$	$.9033 \pm .0039$	$.9009 \pm .0036$	$.9033 \pm .0025$ \circ
w8a	$.9633 \pm .0035$	$.9626 \pm .0042$.9495±.0082●	.9421±.0062●
kddcup04	$.7912 \pm .0039$	$.7935 \pm .0037 \circ$.7903±.0039●	.7900±.0039●
mnist	$.9242 \pm .0021$	$.9338 \pm .0022 \circ$	$.9340 \pm .0020$ \circ	$.9334 \pm .0021 \circ$
connect-4	$.8760 \pm .0023$	$.8794 \pm .0024 \circ$.8749±.0025●	.8784±.00260
acoustic	$.8192 \pm .0032$.8102±.0032•	$.8262 \pm .0032 \circ$	$.8253 \pm .0032$ \circ
ijcnn1	$.9269 \pm .0021$	$.9314 \pm .0025 \circ$	$.9337 \pm .0024 \circ$	$.9282 \pm .0023$ \circ
epsilon	$.9550 \pm .0007$.8640±.0049●	.8643±.0053●	.8647±.0150●
covtype	$.8244 \pm .0014$	$.8271 \pm .0011 \circ$	$.8248 \pm .0013$	$.8246 \pm .0010$
win/	tie/loss	4/6/6	4/6/6	4/6/6

OPAUC:

- scan once
- store statistics

Batch:

- scan many times
- store whole data

OPAUC highly competitive

How about online methods for other univariate surrogate loss?

- Online Uni-Exp: optimize univariate exponential loss
- Online Uni-Squ: optimize univariate least square loss

How about batch methods for least square loss?

- LS-SVM: optimize pairwise least square loss
- Batch Uni-Squ: optimize univariate least square loss

Results: Additional comparisons

datasets	OPAUC	online Uni-Exp	online Uni-Squ	batch LS-SVM	batch Uni-Squ			
diabetes	$.8309 \pm .0350$.8215±.0309•	$.8258 \pm .0354$	$.8325 \pm .0329$	$.8332 \pm .0323$			
fourclass	$.8310 \pm .0251$	$.8281 \pm .0305$	$.8292 \pm .0304$	$.8309 \pm .0309$	$.8297 \pm .0310$			
german	$.7978 \pm .0347$	$.7908 \pm .0367$	$.7899 \pm .0349$	$.7994 \pm .0343$	$.7990 \pm .0342$			
splice	$.9232 \pm .0099$.8931±.0213•	.9153±.0132●	$.9245 \pm .0092$ \circ	$.9211 \pm .0107 \bullet$			
usps	$.9620 \pm .0040$	$.9538 \pm .0045 \bullet$	$.9563 \pm .0041 \bullet$	$.9634 \pm .0045$ \circ	$.9617 \pm .0043$			
letter	$.8114 \pm .0065$	$.8113 \pm .0074$.8053±.0081•	$.8124 \pm .0065$ \circ	$.8112 \pm .0061$			
magic04	$.8383 \pm .0077$	$.8354 \pm .0099 \bullet$.8344±.0086•	$.8379 \pm 0.0078$.8338±.0073•			
a9a	$.9002 \pm .0047$	$.9005 \pm .0024$.8949±.0025●	.8982±.0028•	.8967±.0028•			
w8a	$.9633 \pm .0035$.7693±.0986●	.8847±.0130●	$.9495 \pm .0092 \bullet$.9075±.0104●			
kddcup04	$.7912 \pm .0039$	$.7851 \pm .0050 \bullet$.7850±.0042●	$.7898 \pm .0039 \bullet$	$.7926 \pm .0038$			
mnist	$.9242 \pm .0021$.7932±.0245●	$.9156 \pm .0027 \bullet$	$.9336 \pm .0025$ \circ	$.9279 \pm .0021 \circ$			
connect-4	$.8760 \pm .0023$.8702±.0025•	$.8685 \pm .0033 \bullet$	$.8739 \pm .0026 \bullet$	$.8760 \pm .0024$			
acoustic	$.8192 \pm .0032$.8171±.0034•	$.8193 \pm .0035$	$.8210 \pm .0033$ \circ	$.8222 \pm .0031 \circ$			
ijcnn1	$.9269 \pm .0021$	$.9264 \pm .0035$.9022±.0041●	$.9320 \pm .0037 \circ$	$.9038 \pm .0025 \bullet$			
epsilon	$.9550 \pm .0007$.9488±.0012●	$.9480 \pm .0021 \bullet$	$.8644 \pm .0050 \bullet$.8653±.0073●			
covtype	$.8244 \pm .0014$	$.8236 \pm .0017$	$.8236 \pm .0020$.8222±.0014●	$.8242 \pm .0012$			
win/	tie/loss	10/6/0	11/5/0	6/4/6	6/8/2			
]					
	OPAUC: significantly better than online highly competitive with							

batch

Very high-dimensional data sets

datasets	$\# \mathrm{inst}$	#feat	datasets	# inst	#feat
real-sim	$72,\!309$	20,985	sector.lvr	$9,\!619$	$55,\!197$
rcv1v2	23,149	47,236	news20	$15,\!935$	$62,\!061$
rcv	20,278	47,236	ecml2012	$456,\!886$	98,519
sector	$9,\!619$	55,197	news20.binary	$19,\!996$	$1,\!355,\!191$

We also compared with:

- OPAUC^f: randomly select 1,000 features, then apply OPAUC
- OPAUC^{rp}: randomly project to 1,000 dim., then apply OPAUC
- OPAUC^{pca}: project to 1,000 dim. by PCA, then apply OPAUC

dim	1,355,191	1,355,191 98,519 62,061 55,197 55,197 <i>47,</i>		47,236	47,236	20,278		
datasets	news20.binary	ecml2012	news20	sector	sector.lvr	rcv	rcv1v2	real-sim
OPAUCr	$.6389 \pm .0136$	$.9828 \pm .0008$	$.8871 \pm .0083$	$.9292 \pm .0081$	$.9962 \pm .0011$	$.9831 {\pm} .0016$	$.9686 \pm .0029$	$.9789 \pm .0010$
OAMseq	.6314±.0131•	N/A	.8543±.0099•	$.9163 \pm .0087 \bullet$	$.9965 \pm .0064$.9885±.0010∘	$.9686 \pm .0026$.9840±.0061∘
OAMgra	.6351±.0135●	.9657±.0055●	.8346±.0094•	.9043±.0100●	.9955±.0059∙	.9852±.0019∘	$.9604 \pm .0025 \bullet$	$.9762 \pm .0062 \bullet$
online Uni-Exp	.6347±.0092•	.9820±.0016●	$.8880 \pm .0047$.9215±.0034●	$.9969 \pm .0093$.9907±.0012∘	.9822±.00420	.9914±.0011∘
online Uni-Squ	.6237±.0104●	$.9530 \pm .0041 \bullet$	$.8878 \pm .0066$.9203±.0043●	$.9669 \pm .0260$.9918±.0010∘	.9818±.00140	$.9920 \pm .0009 \circ$
OPAUC ^f	.5068±.0086•	.6601±.0036•	.5958±.0118•	.6228±.0145•	.6813±.0444•	$.7297 \pm .0069 \bullet$	$.6875 \pm .0101 \bullet$.8105±.0042•
OPAUC ^{rp}	.6212±.0072•	.9355±.0047∙	.7885±.0079•	.7286±.0619•	.9863±.0258•	.9450±.0039●	.9353±.0053•	.9444±.0036•
OPAUC ^{pca}	N/A	N/A	$.8878 \pm .0115$.8853±.0114●	.9893±.0288•	.9796±.0020●	$.9752 \pm .0020 \circ$.9834±.00090

OPAUCr: highly competitive , especially for very high-dim data

•/o indicates OPAUCr is significantly better/worse

Another setting:

We have learned a model to do something (such as related to accuracy), but have not stored the data.

Now, we want to learn a model for another thing (such as related to AUC) ... What can we do?

Suppose we have received *m* training examples, and constructed a classifier from these training examples; however, we have not stored these *m* examples

Now, we want to construct a classifier optimizing AUC

A straightforward option:

Using only the *n* examples received after the *m* examples to optimize AUC The *m* examples ignored

What can we do ?

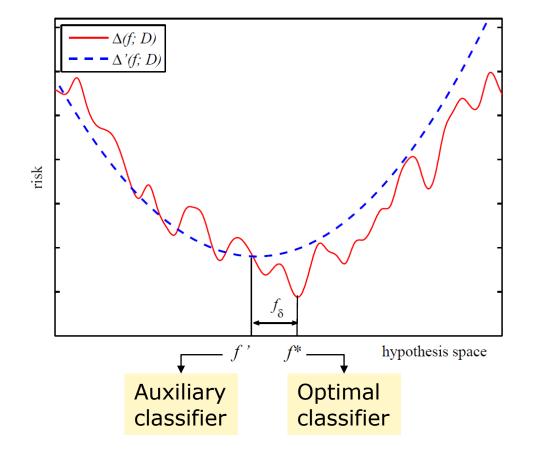
To exploit the *m* exps by adaptation !

Many performance measures are closely-related

e.g., F1-score & PRBEP, AUC & Accuracy [Cortes & Mohri, NIPS'04]

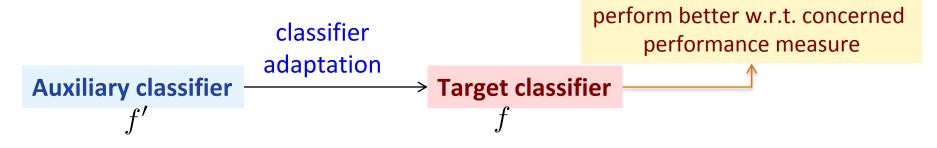
If we have a classifier f' which optimizes accuracy, it can be regarded as a rough estimation of the classifier f^* which optimizes AUC, and thus it will be a good start point to find f^* in the function space

We adapt the "auxiliary classifier" f' for achieving f^*



Auxiliary classifier (e.g., f' which maximizes accuracy) can be helpful in finding the optimal classifier (e.g., f* which maximizes AUC)

We take the **classifier adaptation** strategy:



In the function-level classifier adaption framework

Auxiliary classifier+Delta function=>Target classifier
$$f'$$
 f_{δ} f

Taking $f_{\delta}(\mathbf{x}) = \mathbf{w}^{\top} \Phi(\mathbf{x})$, it follows

$$f(\mathbf{x}) = \operatorname{sign} \left[f'(\mathbf{x}) + \mathbf{w}^{\top} \Phi(\mathbf{x}) \right]$$

We take a multivariate formulation and considers to map a tuple of *n* instances $\bar{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ to a tuple of *n* labels $\bar{y} = (y_1, \dots, y_n)$

 $\Delta(ar{y},ar{y}')$ is the loss by mapping $ar{\mathbf{x}}$ to $ar{y}'$ when its ground-truth is $ar{y}$

Based on regularized risk minimization, we have the problem

 $\min_{\mathbf{w}} \ \Omega(\mathbf{w}) + C \cdot \Delta(\bar{y}, \bar{y}')$

Regularizer Empirical risk Usually non-convex, non-smooth, non-decomposable

The CAPO framework

A convex upper-bound over the empirical risk

$$R(\mathbf{w}; D) = \max_{\bar{y}' \in \mathcal{Y}^n} \left[F(\bar{\mathbf{x}}, \bar{y}') - F(\bar{\mathbf{x}}, \bar{y}) + \Delta(\bar{y}, \bar{y}') \right]$$

$$\Upsilon(\bar{\mathbf{x}}, \bar{y}) = \sum_{i=1}^{n} y_i \begin{bmatrix} f'(\mathbf{x}_i) \\ \Phi(\mathbf{x}_i) \end{bmatrix}$$

 $F(\bar{\mathbf{x}}, \bar{y}) = \begin{bmatrix} 1 \end{bmatrix}^{\top} \Upsilon(\bar{\mathbf{x}}, \bar{y})$

By taking $\Omega(\mathbf{w}) = \|\mathbf{w}\|^2$, the optimization problem:

$$\min_{\mathbf{w},\xi \ge 0} \qquad \frac{1}{2} \|\mathbf{w}\|^2 + C\xi \\ \text{s.t.} \qquad \forall \ \bar{y}' \in \mathcal{Y}^n \setminus \bar{y} : \\ \begin{bmatrix} 1 \\ \mathbf{w} \end{bmatrix}^\top [\Upsilon(\bar{\mathbf{x}},\bar{y}) - \Upsilon(\bar{\mathbf{x}},\bar{y}')] \ge \Delta(\bar{y},\bar{y}') - \xi$$

CAPO finds the target classifier f near the auxiliary classifier f' such that f minimizes the upper-bound of the empirical risk

For multiple auxiliary classifiers, we construct an ensemble:

$$f(\mathbf{x}) = \operatorname{sign}\left[\sum_{i=1}^{m} a_i f^i(\mathbf{x}) + \mathbf{w}^{\top} \Phi(\mathbf{x})\right]$$

Following the same strategy, we get :

$$\begin{split} \min_{\mathbf{a},\mathbf{w},\xi\geq 0} & \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2} B \|\mathbf{a}\|^2 + C\xi \\ \text{s.t.} & \forall \ \bar{y}' \in \mathcal{Y}^n \setminus \bar{y} : \\ & \begin{bmatrix} \mathbf{a} \\ \mathbf{w} \end{bmatrix}^\top \left[\Psi(\bar{\mathbf{x}},\bar{y}) - \Psi(\bar{\mathbf{x}},\bar{y}') \right] \geq \Delta(\bar{y},\bar{y}') - \xi. \end{split} \qquad \Psi(\bar{\mathbf{x}},\bar{y}) = \sum_{i=1}^n y_i \begin{bmatrix} \mathbf{f}_i \\ \Upsilon(\mathbf{x}_i) \end{bmatrix} \end{split}$$

⇒ It learns **an ensemble of auxiliary classifiers** and seeks the target classifier **near the ensemble**, such that **the upper-bound of the empirical risk is minimized**

The solution & algorithm

Single auxiliary classifier

$$\begin{split} \min_{\mathbf{w},\xi \ge 0} & \frac{1}{2} \|\mathbf{w}\|^2 + C\xi \\ \text{s.t.} & \forall \ \bar{y}' \in \mathcal{Y}^n \setminus \bar{y} : \\ & \begin{bmatrix} 1 \\ \mathbf{w} \end{bmatrix}^\top [\Upsilon(\bar{\mathbf{x}},\bar{y}) - \Upsilon(\bar{\mathbf{x}},\bar{y}')] \ge \Delta(\bar{y},\bar{y}') - \xi \end{split}$$

Multiple auxiliary classifiers

$$\begin{split} \min_{\mathbf{a},\mathbf{w},\xi\geq 0} & \quad \frac{1}{2}\|\mathbf{w}\|^2 + \frac{1}{2}B\|\mathbf{a}\|^2 + C\xi\\ \text{s.t.} & \quad \forall \ \bar{y}' \in \mathcal{Y}^n \setminus \bar{y}:\\ & \quad \begin{bmatrix} \mathbf{a} \\ \mathbf{w} \end{bmatrix}^\top [\Psi(\bar{\mathbf{x}},\bar{y}) - \Psi(\bar{\mathbf{x}},\bar{y}')] \geq \Delta(\bar{y},\bar{y}') - \xi. \end{split}$$

By taking linear delta function, the problem can be efficiently solved by cuttingplane algorithm, which is similar to linear SVM-perf

The auxiliary classifier contributes to CAPO in two aspects:

- It injects nonlinearity, which is quite needed in practice;
- It provides an estimate of the target classifier, making the classifier adaption procedure more efficient

• 20 tasks

- 5 datasets from different domains

Face, text, gene, OCR...

DATA SET	#Feature	#TRAIN	#Test
IJCNN1	22	49,990	91,701
Mitfaces	361	6,977	24,045
Reuters	8,315	7,770	3,299
Splice	60	1,000	2,175
Ú SPS*	256	7,291	2,007

 4 performance measures (in addition to AUC, we also consider other performance measures)

Accuracy, F1-score, PRBEP, AUC

-5*4=20

We compare their performance on 20 tasks

- CAPO
 - Auxiliary classifiers: CVM, RBF-NN, C4.5; (all with default parameters)
 - CAPO_{cvm}, CAPO_{nn}, CAPO_{dt}, CAPO* (B=1)
- **SVMperf** [Joachims, ICML'05]
 - Linear kernel & RBF kernel

• SVM with cost model

- Linear kernel & RBF kernel, implemented by SVMlight

The parameter C, RBF kernel width, cost weights are selected via CV on training sets

Both the performance and the used CPU time are reported

Results: Performance

Performance of auxiliary classifiers

									-
TASK	CAPO _{cvm}	$CAPO_{\mathrm{dt}}$	$CAPO_{\mathrm{nn}}$	CAPO*	SVM ^{perf} _{lin}	$\mathrm{SVM}^{\mathrm{perf}}_{\mathrm{rbf}}$	SVM ^{light}	$\mathrm{SVM}_{\mathrm{rbf}}^{\mathrm{light}}$	_
Z F1 S PRBEP AUC	 .9540 .9521) .7620 (.7544) .7723 (.7376) .9607 (.8839) 	.9702 (.9702) .8473 (.8471) .8470 (.8364) .9734 (.9464)	.9150 (.8914) .5753 (.2643) .5692 (.3222) .9198 (.8658)	.9703 .8468 .8605 .9810	.9193 .5565 .6016 .9180	.9658 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	
S Accuracy F1 W AUC	.9842 (.9839) .4658 (.4665) .5127 (.4979) .9148 (.9148)	.9458 (.9302) .1605 (.1342) .1864 (.1822) .7991 (.7201)	.9696 (.9067) .2281 (.1768) .2500 (.1059) .8368 (.7979)	.9841 .4514 .4873 .9137	.9727 .2056 .2140 .8533	.9840 N/A N/A N/A	.9733 .2015 .2309 .8450		ot completed n 24 hours
s Accuracy F1 PRBEP AUC	.9745 (.9745) .7730 (.7729) .7654 (.7709) .9870 (.9363)	.9664 (.9660) .6973 (.6890) .7207 (.6871) .9842 (.9144)	.9715 (.9315) .7455 (.1439) .7151 (.3743) .9868 (.8322)	.9739 .7731 .7765 .9838	.9727 .7375 .7598 .9878	.9727 N/A N/A N/A	.9724 .7599 .7709 .9872	.9721 .7540 .7598 .9873	_
Accuracy F1 G. PRBEP AUC	 .8947 (.8947) .8955 (.8943) .8762 (.8691) .9457 (.8992) 	.9347 (.9347) .9371 (.9362) .9363 (.9355) .9760 (.9307)	.9651 (.9651) .9659 (.9659) .9576 (.9558) .9836 (.9667)	.9664 .9512 .9584 .9852	.8451 .8451 .8532 .9304	.8947 N/A N/A N/A	.8446 .8487 .8523 .9267	.8975 .8990 .9036 .9639	_
* Accuracy *A F1 O PRBEP AUC	 .9691 (.9689) .9611 (.9613) .9500 (.9488) .9731 (.9658) 	.9233 (.9233) .9060 (.9053) .9000 (.8898) .9557 (.9179)	.8520 (.7798) .8188 (.7486) .8195 (.7500) .9137 (.7582)	.9676 .9617 .9573 .9843	.8411 .8012 .7963 .9052	.9706 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	-

CAPO methods, especially CAPO*, achieve the best performance on most tasks

Results: Performance

Performance of auxiliary classifiers

TASK	CAPO _{cv n}	$CAPO_{\mathrm{dt}}$	$CAPO_{nn}$	CAPO*	SVM ^{perf} _{lin}	SVM ^{perf} _{rbf}	SVM ^{light}	$\mathrm{SVM}_{\mathrm{rbf}}^{\mathrm{light}}$	-
Accuracy	.9540 (.9521)	.9702 (.9702)	.9150 (.8914)	.9703	.9193	.9658	N/A	N/A	
F1	.7620 (.7544)	.8473 (.8471)	.5753 (.2643)	.8468	.5565	N/A	N/A	N/A	
O PRBEP	.7723 (.7376)	.8470 (.8364)	.5692 (.3222)	.8605	.6016	N/A	N/A	N/A	
AUC	.9607 (.8839)	.9734 (.9464)	.9198 (.8658)	.9810	.9180	N/A	N/A	N/A	
Se Accuracy F1 W AUC W AUC	.9842 (.9839) .4658 (.4665) .5127 (.4979) .9148 (.9148)	.9458 (.9302) .1605 (.1342) .1864 (.1822) .7991 (.7201)	.9696 (.9067) .2281 (.1768) .2500 (.1059) .8368 (.7979)	.9841 .4514 .4873 .9137	.9727 .2056 .2140 .8533	.9840 N/A N/A N/A	.9733 .2015 .2309 .8450		ot completed n 24 hours
Accuracy	.9745 (.9745)	.9664 (.9660)	.9715 (.9315)	.9739	.9727	.9727	.9724	.9721	
F1	.7730 (.7729)	.6973 (.6890)	.7455 (.1439)	.7731	.7375	N/A	.7599	.7540	
PRBEP	.7654 (.7709)	.7207 (.6871)	.7151 (.3743)	.7765	.7598	N/A	.7709	.7598	
AUC	.9870 (.9363)	.9842 (.9144)	.9868 (.8322)	.9838	.9878	N/A	.9872	.9873	
Accuracy	.8947 (.8947)	.9347 (.9347)	.9651 (.9651)	.9664	.8451	.8947	.8446	.8975	_
F1	.8955 (.8943)	.9371 (.9362)	.9659 (.9659)	.9512	.8451	N/A	.8487	.8990	
G PRBEP	.8762 (.8691)	.9363 (.9355)	.9576 (.9558)	.9584	.8532	N/A	.8523	.9036	
AUC	.9457 (.8992)	.9760 (.9307)	.9836 (.9667)	.9852	.9304	N/A	.9267	.9639	
* Accuracy	.9691 (.9689)	.9233 (.9233)	.8520 (.7798)	.9676	.8411	.9706	N/A	N/A	_
F1	.9611 (.9613)	.9060 (.9053)	.8188 (.7486)	.9617	.8012	N/A	N/A	N/A	
SD PRBEP	.9500 (.9488)	.9000 (.8898)	.8195 (.7500)	.9573	.7963	N/A	N/A	N/A	
AUC	.9731 (.9658)	.9557 (.9179)	.9137 (.7582)	.9843	.9052	N/A	N/A	N/A	

CAPO achieves performance improvements over auxiliary classifiers

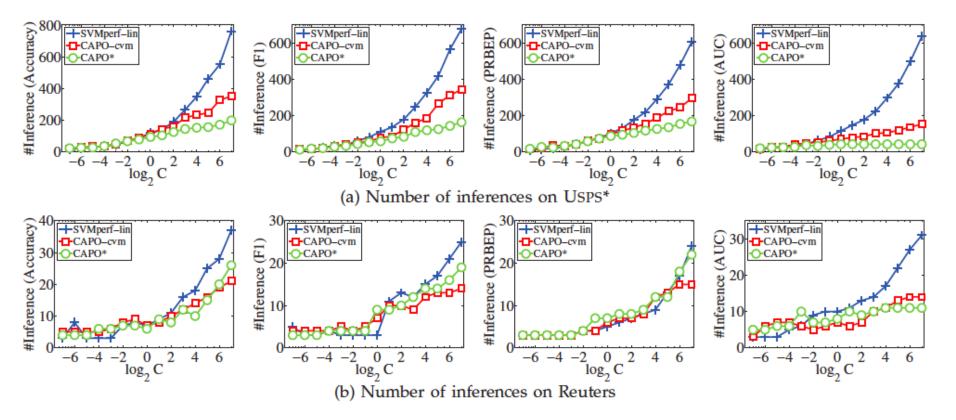
Results: Time cost

	TASK	CAPO _{cvm}	$CAPO_{\rm dt}$	$CAPO_{\mathrm{nn}}$	CAPO*	$\mathrm{SVM}_{\mathrm{lin}}^{\mathrm{perf}}$	$\mathrm{SVM}^{\mathrm{perf}}_{\mathrm{rbf}}$	SVM_{lin}^{light}	$\mathrm{SVM}_{\mathrm{rbf}}^{\mathrm{light}}$	_
IJCNN1	Accuracy F1 PRBEP AUC	9.3 9,451.5 1,507.9 88.0	11.1 9,011.5 1,033.3 38.0	9.9 14,809.3 2,276.2 124.0	11.2 6,652.8 1,005.1 40.6	10.0 12,281.3 2,034.0 112.6	96.6 N/A N/A N/A	N/A	N/A	
Mitfaces	Accuracy F1 PRBEP AUC	9.5 465.6 126.9 37.7	11.2 802.5 183.4 48.5	23.7 1,211.5 241.6 74.0	9.0 379.0 119.6 30.6	27.2 1,189.4 234.4 79.3	27,089.3 N/A N/A N/A	6,114.7	N/A	not completed in 24 hours
Reuters	Accuracy F1 PRBEP AUC	5.7 68.7 10.8 18.9	2.1 67.4 13.1 8.6	2.6 64.3 11.9 8.7	3.9 67.6 10.6 3.9	2.3 60.2 11.4 8.1	39,813.1 N/A N/A N/A	283.1	53,113.8	_
Splice	Accuracy F1 PRBEP AUC	4.0 168.2 11.8 2.0	484.5 592.3 17.0 3.3	697.1 3,373.9 27.3 7.3	2.0 58.4 6.8 1.2	3,602.4 10,201.5 82.6 42.0	2,187.1 N/A N/A N/A	16,297.6	464.2	_
USPS*	Accuracy F1 PRBEP AUC	24.6 2,199.0 626.2 155.6	35.4 2,605.4 566.1 139.9	215.3 5,429.9 938.9 424.3	15.6 1,514.8 404.4 76.1	221.5 5,225.9 895.2 452.5	24,026.7 N/A N/A N/A	N/A	N/A	_

CAPO is even more efficient than linear SVMperf

Why CAPO more efficient

The number of inference iterations:



One-pass optimization (one scan, storage independent to data size):

- ✓ Pairwise least square loss is consistent with AUC
- ✓ Two statistics are sufficient for AUC optimization
- ✓ For high-dim data, sparse approx of covariance matrices

Adaptational optimization:

- ✓ Benefits from classifier optimizing closely-related measures
- ✓ Optimizing a convex upper-bound over the empirical risk
- ✓ Multiple auxiliary classifiers increase robustness

We take AUC for example, but the ideas can be extended to other performance measures (some are future work)

It is specified in Zhou & Chen, Hybrid decision tree, *Knowledge-Based Systems*, 2002, vol.15, no.8, pp.515-528

- **E-IL** (Example-Incremental Learning): **New training examples** are provided after a learning system being trained
- C-IL (Class-Incremental Learning): New output classes are provided
 a learning system being trained
 EeW studies on
- A-IL (Attribute-Incremental Learning): New input att after a learning system being trained

Few studies on C-IL, A-IL

A recent study on **C-IL**: Da, Yu & Zhou. Learning with augmented class by exploiting unlabeled data. AAAI 2014 The talk involves joint work with

My students:

Wei Gao (高尉)

Nan Li (李楠)

My collaborators:

Rong Jin, Ivor W. Tsang, Shenghuo Zhu

To handle big data:

- Incremental learning is important
- Least square loss is even more useful than before
- Relevant, previously trained models can be helpful

Codes available:

OPAUC: <u>http://lamda.nju.edu.cn/code_OPAUC.ashx</u>
 CAPO: <u>http://lamda.nju.edu.cn/code_CAPO.ashx</u>

Thanks!