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ABSTRACT
Facing ever increasing volumes of data but limited human
annotation capabilities, active learning strategies for select-
ing the most informative labels gain in importance. How-
ever, the choice of an appropriate active learning strategy
itself is a complex task that requires to consider different cri-
teria such as the informativeness of the selected labels, the
versatility with respect to classifier technologies, or the pro-
cessing speed. This raises the question, which combinations
of active learning strategies and classifier technology are the
most promising to apply. A general answer to this question,
without application-specific, label-intensive experiments on
each dataset, is highly desirable, as active learning is applied
in situations with limited labelled data. Therefore, this pa-
per studies several combinations of different active learning
strategies and classifier technologies and evaluates them in
a series of comparative experiments.

General Terms
Active Learning, Selective Sampling

1. INTRODUCTION
While the volumes of data are constantly increasing [7], hu-
man annotation and supervision capacities remain limited.
This raises the need for approaches that help in the efficient
allocation of these capacities. Active machine learning [17]
provides such approaches for determining and selecting the
most valuable information. In classification tasks, this cor-
responds to selecting the instance from a set of candidates,
whose label is expected to improve a classifier’s performance
the most [18]. Given the large number of approaches that
have been proposed in literature, the choice of the most ap-
propriate active learning strategy constitutes itself a com-
plex task: multiple criteria such as the informativeness of
the selected labels, the versatility of the approach with re-
spect to classifier technologies, or the processing speed of
the approach need to be considered.

Active learning is applied in situations with very limited ini-
tial labelled data. Thus, knowing the overall most promis-
ing combinations of active learning strategies and classifier
technologies without performing application-specific, label-
intensive experiments on each novel dataset is highly desir-
able. This paper addresses this question by providing results
of an experimental performance comparison of several com-
binations of popular classifier technologies and active learn-
ing strategies. In Section 2, related surveys are reviewed
before discussing selected active learning strategies. These
strategies are then experimentally evaluated in Section 3,
before closing with concluding remarks in Section 4.

2. ACTIVE LEARNING APPROACHES
This paper addresses the pool-based [18, 4] active learning
scenario for binary classifiers, where an active classifier has
access to a pool of unlabelled instances U = {(x, .)}. Re-
peatedly, the best instance (x∗, .) ∈ U is selected, its label
y∗ is requested from an oracle, and it is moved from U to
the set of labelled instanced L = {(x, y)} to retrain the
classifier. There exist various approaches for this scenario,
which were surveyed in [17, 4, 18, 6]. The technical report
[17],the machine learning encyclopedia entry [4] on active
learning, and more recently the textbook [18] provide an in-
troduction to active learning, as well as a good overview on
various families of active learning approaches. While com-
paring theoretical aspects of the different approaches, they
do not include an empirical evaluation. Recently, [6] sur-
vey different approaches based on uncertainty sampling and
instance correlation and provide a categorisation of differ-
ent approaches. However, the performance analysis in that
review is limited to runtime evaluations, thus leaving the
question on the classification performance of different ap-
proaches open. An experimental classification performance
evaluation and comparison of some approaches was done in
the active learning challenge, whose results are published in
[8]. It is remarked therein that a key to success in active
learning is handling the trade-off between exploration and
exploitation: the former samples in regions with yet little
collected information, the latter investigates regions where
the current model suspects the decision boundary. Accord-
ing to [8, page iv], the overall winners use combinations of
random and uncertainty sampling to tackle this trade-off.

This comparative study’s focus are fast approaches that are
usable with any classification technique. Building on the re-
sults above, we compare random sampling, uncertainty sam-



pling, and a combination of both that tackles exploration-
exploration. In addition to these popular approaches, we in-
clude the very recently proposed probabilistic active learning
approach, which implicitly balances exploration-exploration.
We now briefly review these approaches, before continuing
with the experimental evaluation in the next chapter.

2.1 Random Sampling
A simple and fast baseline is random sampling, where in-
stances are selected at random with equal probability. De-
spite the simplicity of this purely explorative strategy, it has
been shown to be difficult to be beaten consistently [11] and
is one of the most popular active learning baselines [8].

2.2 Uncertainty Sampling
A very popular active learning strategy is uncertainty sam-
pling [13], which is frequently used as baseline (e.g. in the
active learning competition [8]). This is a purely exploita-
tive strategy that relies on the current model to compute
so-called uncertainty measures. These serve as proxies for
a candidate’s impact on the classification performance, and
the candidate with the highest uncertainty is selected for la-
belling. In the seminal work of [13], a probabilistic classifier
is used on a candidate to compute the posterior of its most
likely class. The absolute difference between this posterior
estimate and 0.5 is used as uncertainty measure (lower val-
ues denoting higher uncertainty). The formula for picking
x∗LC is the following according to[17]:

x∗LC = argmax
x

1− Pθ(ŷ | x) (1)

x∗LC is the instance from the pool of unlabelled data Du
which our model θ is least confident in while ŷ is the class for
which the model calculated the highest posterior estimate so
ŷ = argmax

y
Pθ(y | x). In addition to this confidence-based

uncertainty measure, other measures are common as well
[18], like entropy or the margin between a candidate and
the decision boundary. However, [17] notes that for binary
classification problems classifiers the measures margin, con-
fidence and entropy result in the same ranking and querying
of instances.

This strategy is easy to implement and computationally effi-
cient, having an asymptotic time time complexity of O(|U|).
Thus, it is also usable in time critical applications, or in big
data scenarios with large numbers of unlabelled instances,
or on fast data streams [22]. Nevertheless, a known disad-
vantage [20] of uncertainty sampling is that these proxies
do not consider the number of similar instances on which
the posterior estimates are made or the decision boundaries
are drawn. The reported results of empirical evaluations are
somewhat inconclusive, with some authors (e.g. [2, 16, 9])
reporting even worse performance on some data sets than
random sampling. Its major problems are that it can get
stuck in regions with high Bayesian error, especially when
the data is not linearly separable. Additionally, as this strat-
egy queries instances that are close to the current decision
boundary, it is prone to missing subconcepts if the initial de-
cision boundary is unfavourable for the data. Furthermore,
it can also tend to query outliers which are not represen-
tative for the underlying distribution. Figure 1 illustrates
some of the problems while the work of [21] and [20] discuss

Figure 1: This figure shows a configuration during
the active learning process on a two-class problem.
The red line is the current decision boundary and
the coloured stars and squares are the labelled in-
stances. The stars on the top left are a subconcept
which will probably be missed by uncertainty sam-
pling because those instances are far away from the
decision boundary which means the classifier is very
confident in their prediction. The star with the blue
circle on the other hand is an outlier that is very
close to the current decision boundary and there-
fore highly likely to be queried for labelling.

the issue of querying outliers. Following next is a short de-
scription of three particular uncertainty measures based on
posterior estimates namely uncertainty sampling based on
confidence, margin and entropy.

2.3 Semi-Random Sampling
The combination of uncertainty and random sampling to
combine exploitation and exploration has been suggested
for example in [12, 8, 22]. Most recently, [22] uses a mix
of random and uncertainty sampling on streams to tackle
the problem of missing exploration with uncertainty mea-
sures. This is especially useful in stream-based active learn-
ing where concepts and thus the optimal decision bound-
ary might change over time. The authors speculate that
in a static scenario it is likely that uncertainty sampling
beats the mixed strategies, as the decision boundary does
not change over time. We investigate this hypothesis by
studying the performance of a mixed strategy for pool-based
active learning, which switches between uncertainty and ran-
dom sampling. This strategy alternatingly applies random
sampling and uncertainty sampling, beginning with the ini-
tial instance being selected randomly from the unlabelled
pool Du. This strategy has the same asymptotic time com-
plexity as uncertainty sampling, but is faster by a constant
factor due to using random selection half of the time.

2.4 Probabilistic Active Learning
Probabilistic active learning is a novel approach [10] that
directly optimises a performance measure like accuracy, us-
ing statistically sound methods to guide the degree of ex-
ploitation and exploration. In this aspect it is comparable
to error reduction approaches (proposed in [15]), while still
having linear complexity like the fast uncertainty methods.



For binary classification with Parzen Window classifiers, it
was already shown that probabilistic active learning achieves
comparable or superior performance than error reduction.

Probabilistic active learning builds on the smoothness as-
sumption commonly used in semi-supervised learning [3],
which suggests that the influence of an instance on the clas-
sification process is the highest in its neighbourhood:

Semi-supervised smoothness assumption: If two
points x1, x2 in a high-density region are close,
then so should be the corresponding outputs y1, y2.

Therefore, the method proposed in [10] considers within
the neighbourhood of an instance the number of labelled
instances n and the share of positive labels therein p̂ =
n+

n
. These two values are the necessary label statistics

ls = (n, p̂), which should be provided by the classifier be-
ing used. As the real posterior p of that neighbourhood
and the label realisation y of the instance under consider-
ation are unknown, they are modelled as hidden variables.
The so-called probabilistic gain is calculated as the expec-
tation over all possible realisations of p and y of the gain in
classification performance. This gain is then weighted with
the density in an instance’s neighbourhood, considering the
union of the labelled and unlabelled pool Du ∪Dl, in order
to prefer dense regions and avoid outliers. This probabilis-
tic gain calculation models the true posterior p within the
neighbourhood as being Beta-distributed, and the label re-
alisation y as being Bernoulli-distributed with p as an input.
Thus, the number of positive instances in the neighbourhood
n+ = n · p̂ is binomially distributed.

For accuracy or misclassification loss, a closed-form solution
for computing the probabilistic gain is given in [9]:

GOPAL(n, p̂, τ,m) =
(n+ 1)

m
·
(

n
n · p̂

)
· (2)(

IML(n, p̂, τ, 0, 0)−
m∑
k=0

IML(n, p̂, τ,m, k)

)
(3)

Here, τ is the cost of a false positive (normalised such that
the costs of a false positive and a false negative add up to
one), m is the maximal available budget for the candidate’s
neighbourhood, and IML(n, p̂, τ,m, k) is a function that is
proportional to the expected misclassification loss in case k
positive labels were among the m purchased ones:

IML(n, p̂, τ,m, k) =

(
m
k

)
· (4)

(1− τ) · Γ(1−k+m+n−np̂)Γ(2+k+np̂)
Γ(3+m+n)

np̂+k
n+m

< τ

(τ − τ2) · Γ(1−k+m+n−np̂)Γ(1+k+np̂)
Γ(2+m+n)

np̂+k
n+m

= τ

τ · Γ(2−k+m+n−np̂)Γ(1+k+np̂)
Γ(3+m+n)

np̂+k
n+m

> τ

(5)

Here, Γ(z) is Legendre’s gamma function (see e.g. [14, p. 206]).

For computing the probabilistic gain, the label statistics of
an instance’s neighbourhood are required, which consist of
total number of labels (n) and the share of positives therein
(p̂). In [9, 10], it is argued that using estimates provided by
a probabilistic classifier might be favourable to using kernel
frequency estimates as substitutes. For investigating this ex-
perimentally, different ways of computing the label statistics
for different classifier technologies need to be specified.

When using kernel frequency estimates as substitutes, [10]
propose the following formula that employs Gaussian kernels
with a bandwidth of σ:

LC(x,L) ≈
∑
xi∈L

exp

(
−‖x− xi‖

2

2σ2

)
(6)

The total number of labels is then n = LC(x,L), where
L is the set of all labelled instances, and the the share of
positives is p̂ = LC(x,L+)/LC(x,L), where L+ is the subset
of labelled positive instances.

For Parzen-Window Classifiers [2], which use kernel density
estimates for computing an instance’s posterior probabili-
ties, the kernel frequency estimates above for p̂ are identical
to the classifier’s posterior estimates. However, for Naive
Bayes Classifiers these frequency estimates differ from the
posterior estimates, due to the conditional independence as-
sumed when computing the latter. Therefore, the classi-
fier’s estimates should be used directly for p̂. For k-Nearest
Neighbour Classifiers, these posterior estimates are obtained
by the number of positives among an instance’s k nearest
neighbours. In analogy, for Tree-Based Classifiers such as
Hoeffding Trees [5], the probabilistic estimates are obtained
from the summary statistics in an instance’s leaf, i.e. by
simply dividing the number of positives by the total number
of labels processed in that leaf.

In the classifier technologies discussed above, a label influ-
ences solely a particular region in the feature space. How-
ever, for some classifiers this does not hold. For example,
in Logistic Regression Classifiers an instance might alter
the decision on instances that are far away. Thus, even
though Logistic Regression Classifiers provide probabilistic
estimates that might be used for p̂, they might be not suited
for probabilistic active learning.

3. EXPERIMENTAL COMPARISON
The experimental evaluation is guided by the following hy-
potheses, that describe the relationship between the active
learning strategies described in section 2:

1. Probabilistic active learning outperforms random, semi-
random and uncertainty sampling.

2. The performance of probabilistic active learning drops
if the label statistics are calculated independently of
the classifier being used.

3. Semi-random sampling does not outperform random
and uncertainty sampling at the same time.

The first hypothesis is motivated by the capability of prob-
abilistic active learning to balance exploration and exploita-



tion by computing the expected improvement in classifi-
cation performance in an instance’s neighbourhood, rather
than using a heuristic approach. However, this relies on good
estimates of the labelled information in an instance’s neigh-
bourhood, which are provided by the label statistics. These
estimates depend on the classifier technology, thus comput-
ing them independently from the classifier is expected to
deteriorate the performance, motivating the second hypoth-
esis. The third hypothesis is motivated by the speculation in
[22] that mixed strategies might be inferior in a pool-based
setting with static concepts (as in our setting). According to
this hypothesis, the performance of semi-random sampling
should be between that of random and uncertainty sampling.

For testing these hypotheses, we follow the standard active
learning assumptions, discussed and motivated in [17]:

1. All labels cost the same.

2. The labels that are bought are always correct.

3. The classifier learns incrementally on the actively se-
lected labels, without any other change.

3.1 Experimental Setup
Active learning works on the trade-off between minimising
the number of labels and maximising classification perfor-
mance. For a single experiment, this trade-off is commonly
visualised using learning curves, which depict the classi-
fier’s performance at different amounts of labelled instances.
However, for a multitude of combinations of active learning
approaches and datasets (as in this comparative study), a
multitude of curves need to be compared. For matters of
space and readability, different approaches for aggregating
this information were used in literature. One proposed solu-
tion is to compare the area under the learning curve [8] but
this method loses information about dominance at the dif-
ferent stages and might be misleading when learning curves
intersect. Therefore, we use the approach suggested in [9]
of pairwise comparisons at specific points in the learning
process, in order to see which strategy dominates or is dom-
inated by another strategy at which point in the learning
process. Furthermore, in order to improve reliability of the
results, we use n-fold-cross-validation to divide the datasets
into different partitions of test and training sets. We then
average the results at each learning stage over the differ-
ent folds. The experimental setup used for the comparison
of active learning strategies is summarised by the following
workflow:

1. Employ the selected strategies with the selected clas-
sifiers and datasets.

2. Compare the accuracy of two competing strategies af-
ter a specific number of instances were labelled and
create two performance vectors for that point of com-
parison by collecting the achieved performance from
all the folds of the 10-fold-cross-validation and do that
for all the random seeds. This gives us two vectors of
the length 100 as there are 10 folds for each of the 10
seeds.

3. Test if the performance vector of one strategy is sig-
nificantly better or worse using a two-sided Wilcoxon
test with a significance level of 0.05.

4. Repeat steps 2 and 3 for all classifiers on the individ-
ual datasets and also over all datasets at the same time
which gives us a summary of how the strategies per-
form for a specific classifier over all datasets. The cho-
sen comparison points are the performances obtained
after labelling 20 and 40 instances. Accuracy is se-
lected as performance measure.

5. Check if the results of step 4 are in line with the hy-
potheses or contradict them.

3.1.1 Datasets
For the experiments the following real-world datasets from
the UCI machine learning repository [1] are used: haberman,
seeds, vertebral. Additionally, two synthetical datasets are
included, namely checkerboard1 and checkerboard2 [2, 9].
The datasets are preprocessed such that there are no miss-
ing or invalid values and normalised such that all attribute
values are between zero and one. All the datasets are ran-
domised and divided into ten folds, which are then used in
the cross-validation of all active learning strategies. Since
the datasets are small and the learning process converges
quickly, the budget is set to 40 instances.

3.1.2 Algorithms
The compared active learning approaches are random sam-
pling (uniform selection probability), semi-random and un-
certainty sampling (both using confidence as uncertainty
measure), and probabilistic active learning (using accuracy
with τ = 0.5 as performance measure).

All active learning strategies are evaluated on the same set of
(incremental) classifiers. Those classifiers, implemented in
MOA and WEKA, are Hoeffding trees, Naive Bayes, logistic
regression, k-nearest-neighbour and a Parzen-Window clas-
sifier which was implemented by the authors and is described
in [2]. All algorithms were run on a desktop computer (Intel
i5-760 with 2.8GHz and 8GB RAM).

The label statistics are once calculated by using the prob-
abilistic classifier’s posterior estimate for the values of the
share of positives (p̂) in a neighbourhood. Furthermore, to
evaluate the effect of calculating the label statistics indepen-
dently of the classifier, estimates based on kernel frequency
estimates (as in [9]) over the labels are used.

3.2 Results
Based on the three hypotheses stated above, we now sum-
marise our findings in the next subsections. Tables 2 and 1
provide the complete results of the experimental evaluation.

Table 2 shows the performance comparison after 20 and 40
labels over all datasets for different pairs of active learning
strategies. The numbers are the percentages of wins of the
strategy in the row versus the strategies in the columns,
excluding ties. Thus, symmetric values sum up to one. Sig-
nificantly better results of a two-sided Wilcoxon test with
a significance level of 0.05 are denoted with a ‘*‘, signifi-
cantly worse ones with a ‘-‘. The active learning strategies



are denoted with Pal (probabilistic active learning), Conf
(confidence-based uncertainty sampling), Ran (random sam-
pling), and Semi (semi-random sampling). For the columns
on the left, the posterior estimates p̂ come from the prob-
abilistic classifier, while for the columns on the right they
are calculated independently of the classifier by using kernel
frequency estimates. In both cases, the number of labels n
is calculated by kernel frequency estimates.

Table 1 summarises for different classifiers the effect on Pal’s
performance of using independently calculated posterior es-
timates against estimates takes from the probabilistic clas-
sifier. That is, the values correspond to the number of wins
(excluding ties) of Pal with independently calculated poste-
rior estimates (by using kernel frequency estimates) against
Pal with estimates taken directly from the probabilistic clas-
sifier. A ‘*‘ shows that the performance is significantly bet-
ter and a ‘-‘ shows that it is significantly worse using a two-
sided Wilcoxon test with a significance level of 0.05. One can
see that in the majority of cases calculating both parame-
ters independently leads to a significantly worse classifier
performance.

3.2.1 Probabilistic Active Learning Is Superior
In order to assess this statement, Table 2 provides the re-
sults for different classifiers. For a Parzen Window classifier
(top-most cells), probabilistic active learning outperforms
the other strategies significantly over all datasets, both af-
ter 20 and 40 acquired labels, and independently whether
posterior estimates by the probabilistic classifier or by ker-
nel frequency estimation are used.

For Hoeffding Trees, this does only hold when posterior
estimates by the classifier are used (64.26%,64.92%,62.7%
at 20 labels, and 63.19%,69%,66.55% at 40 labels against
confidence-based uncertainty sampling, random sampling,
and semi-random sampling, respectively). When using in-
dependently calculated posterior estimates for probabilistic
active learning, its performance is neither significantly bet-
ter nor significantly worse than that of other approaches.

For Naive Bayes with posterior estimates by the classifier,
Pal is again always significantly better. For Naive Bayes
with kernel frequency estimates for the posterior, Pal is sig-
nificantly better than random while not significantly worse
than any other strategy.

For k-Nearest Neighbour and Logistic Regression, proba-
bilistic active learning is not better: with k-NN it is sig-
nificantly worse than uncertainty sampling or semi-random-
sampling, but not significantly worse than random sampling.
With logistic regression, results are inconclusive, but prob-
abilistic active learning performs in some constellations sig-
nificantly worse than uncertainty or random sampling. The
reason for the weak performance of probabilistic active learn-
ing in combination with Logistic Regression is that here the
smoothness assumption is violated, as an instance might in-
fluence the decision boundary at locations that are far away
from its coordinates. The problem with k-Nearest Neigh-
bour is a different one: here, the number of labels that are
considered by the classifier is constantly set to three. Thus,
the value n used in the label statistics is misleading the ac-
tive learner.

3.2.2 Independent Label Statistics Reduce Performance
The results discussed above already indicate an important
relationship between the label statistics and the performance
of the probabilistic active learning approach. To assess this
relationship further, and to test the second hypothesis that
classifier-independent calculation of these label statistics re-
duces the performance, Table 1 shows the results of a pair-
wise comparison between probabilistic active learning with
and without independently computed posterior estimates.

Interestingly, the results depend on the learning stage: after
processing the first ten labels (comparison point CP = 10),
there is not yet a difference in performance between the
two ways of calculating the label statistic’s p̂ (except for
3-Nearest Neighbour). In the later learning stages (CP =
20, 30, 40), this changes, and using independently estimated
values for p̂ significantly reduces performance for Hoeffding-
Trees, Naive Bayes, and Logistic Regression. For 3-Nearest
Neighbour, the results are different, but on this particular
type of classifier the probabilistic active learning approach
is not recommendable anyway.

One should note that this evaluation was limited to the ef-
fect of independent posterior estimates for p̂, while always
independently calculated estimates for the number of labels
n were used. The situation of using for both values (for n
and p̂) kernel frequency estimates corresponds to using two
classifiers, namely a Parzen-Window classifier for instance
selection, and the chosen classifier for prediction. This is the
typical scenario of label reusability as introduced by [19].

Table 1: Effect of Independent Label Statistics Cal-
culation

Labels H-Tree Naive B. Log. Reg. 3-NN
CP=10 54.33% 47.62% 49.82% 34.92%-
CP=20 39.3%- 38.78%- 37.67%- 54.32%
CP=30 32.17%- 28.35%- 30.93%- 48.67%
CP=40 30.4%- 25.76%- 37.04%- 65.82%*

3.2.3 Semi-Random Sampling is not better than both
Random and Uncertainty Sampling

The results in Table 2 show that semi-random-sampling is
with none of the classifiers consistently better (or worse)
than both, random sampling and uncertainty sampling. That
is, it is never at the same time dominating (or dominated
by) both strategies. This supports the suggestions by [22]
that a mixed strategy is inferior in a static setting because
either uncertainty sampling will perform well or random will
perform well and semi-random will end up in the middle of
the two. However, this does not mean that a semi-random
strategy is inferior to random or uncertainty sampling in ev-
ery setting. For some configurations, semi-random sampling
is slightly better than both, but in those cases the differ-
ence is never significant. Thus, in a real-world application
where hold-out performance tests are difficult, semi-random
sampling might help to avoid the worst-case performance.
Nevertheless, for most classifier types probabilistic active
learning would is likely to be the better choice, as it out-
performs in general all three other methods when the label
statistics are provided by the used classifier.



4. CONCLUSION
In this paper, the performance of popular active learning
strategies in combination with different classifier technolo-
gies has been studied. These combinations were experi-
mentally evaluated using 100-fold cross validation over sev-
eral different real-world and synthetic datasets. The re-
sults confirm the finding of previous studies that neither
pure exploration nor pure exploitation strategies perform
consistently well, making the handling of the trade-off be-
tween exploration and exploitation a key challenge. In ad-
dition, the results show that the recently proposed prob-
abilistic active learning approach significantly outperforms
uncertainty-sampling-based strategies when used with Bayes,
Naive Bayes or Decision-Tree Classifiers, but works not well
on k-Nearest Neighbour or Logistic Regression Classifiers.
Furthermore, it is shown that using a probabilistic classi-
fier’s estimates for the label statistics is in most cases better
than using estimates that were calculated independently of
the classifier. Finally, the results confirm the recently stated
conjecture [22] that a hybrid between random and uncer-
tainty sampling does not outperform both strategies at the
same time in a pool-based setting.

While several combinations of active learning and classifi-
cation approaches have been evaluated in this paper, this
comparative study is by no means complete. Future work
will focus on evaluating further combinations, as well as in-
vestigating further ways of computing better label statistics
for some classifier technologies.

5. ACKNOWLEDGMENTS
We would like to thank Daniel Kottke and Myra Spiliopoulou.

6. REFERENCES
[1] A. Asuncion and D. J. Newman. UCI machine

learning repository, 2015.

[2] O. Chapelle. Active learning for parzen window
classifier. In Proc. of the Tenth Int. Workshop on
Artificial Intelligence and Statistics, pages 49–56,
2005.

[3] O. Chapelle, B. Schölkopf, and A. Zien, editors.
Semi-supervised Learning. MIT Press, 2006.

[4] D. Cohn. Active learning. In C. Sammut and G. I.
Webb, editors, Encyclopedia of Machine Learning,
pages 10–14. Springer, 2010.

[5] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proc. of the sixth ACM SIGKDD
international conference on Knowledge discovery and
data mining (KDD00), KDD ’00, pages 71–80. ACM,
2000.

[6] Y. Fu, X. Zhu, and B. Li. A survey on instance
selection for active learning. Knowledge and
Information Systems, 35(2):249–283, 2012.

[7] J. Gantz and D. Reinsel. The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth
in the far east, December 2012.

[8] I. Guyon, G. Cawley, G. Dror, V. Lemaire, and
A. Statnikov, editors. Active Learning Challenge,
volume 6 of Challenges in Machine Learning.
Microtome Publishing, 2011.

[9] G. Krempl, D. Kottke, and V. Lemaire. Optimised
probabilistic active learning (OPAL) for fast,

non-myopic, cost-sensitive active classification.
Machine Learning, Special Issue of ECML PKDD
2015, 2015.

[10] G. Krempl, D. Kottke, and M. Spiliopoulou.
Probabilistic active learning: Towards combining
versatility, optimality and efficiency. In S. Dzeroski,
P. Panov, D. Kocev, and L. Todorovski, editors, Proc.
of the 17th Int. Conf. on Discovery Science (DS),
Bled, volume 8777 of Lecture Notes in Computer
Science, pages 168–179. Springer, 2014.

[11] B. Krishnapuram, S. Yu, and R. B. Rao, editors.
Selective Data Acquisition for Machine Learning. CRC
Press, Inc., Boca Raton, FL, USA, 1st edition, 2011.

[12] L. Lan, H. Shi, Z. Wang, and S. Vucetic. Active
learning based on parzen window. Journal of Machine
Learning Research - Proc. Track, 16:99–112, 2011.

[13] D. D. Lewis and W. A. Gale. A sequential algorithm
for training text classifiers. In Proc. of the 17th annual
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’94, pages
3–12, New York, NY, USA, 1994. Springer-Verlag New
York, Inc.

[14] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipes in Fortran 77:
The Art of Scientific Computing. Cambridge
University Press, 2 edition, 1992.

[15] N. Roy and A. McCallum. Toward optimal active
learning through sampling estimation of error
reduction. In Proc. of the 18th Int. Conf. on Machine
Learning, ICML 2001, Williamstown, MA, USA,
ICML ’01, pages 441–448, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[16] A. I. Schein and L. H. Ungar. Active learning for
logistic regression: an evaluation. Machine Learning,
68(3):235–265, 2007.

[17] B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of
Wisconsin-Madison, Madison, Wisconsin, USA, 2009.

[18] B. Settles. Active Learning. Number 18 in Synthesis
Lectures on Artificial Intelligence and Machine
Learning. Morgan and Claypool Publishers, 2012.

[19] K. Tomanek and K. Morik. Inspecting sample
reusability for active learning. In I. Guyon, G. C.
Cawley, G. Dror, V. Lemaire, and A. R. Statnikov,
editors, AISTATS workshop on Active Learning and
Experimental Design, volume 16 of JMLR Proc., pages
169–181. JMLR.org, 2011.

[20] J. Zhu, H. Wang, B. K. Tsou, and M. Y. Ma. Active
learning with sampling by uncertainty and density for
data annotations. IEEE Transactions on Audio,
Speech & Language Processing, 18(6):1323–1331, 2010.

[21] J. Zhu, H. Wang, T. Yao, and B. K. Tsou. Active
learning with sampling by uncertainty and density for
word sense disambiguation and text classification. In
D. Scott and H. Uszkoreit, editors, COLING 2008,
22nd Int. Conf. on Computational Linguistics, Proc.
of the Conf., 18-22 August 2008, Manchester, UK,
pages 1137–1144, 2008.
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Table 2: Pairwise performance comparison after 20 and 40 labels over all datasets.
Parzen-Window Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 69.48%* 73.22%* 71.98%* pal 0% 69.48%* 73.22%* 71.98%*
conf 30.52%- 0% 47.62%- 43.75%- conf 30.52%- 0% 47.62%- 43.75%-
ran 26.78%- 52.38%* 0% 47.82% ran 26.78%- 52.38%* 0% 47.82%
semi 28.02%- 56.25%* 52.18% 0% semi 28.02%- 56.25%* 52.18% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 69.09%* 68.19%* 66.32%* pal 0% 69.09%* 68.19%* 66.32%*
conf 30.91%- 0% 38.3%- 37.13%- conf 30.91%- 0% 38.3%- 37.13%-
ran 31.81%- 61.7%* 0% 51.93% ran 31.81%- 61.7%* 0% 51.93%
semi 33.68%- 62.87%* 48.07% 0% semi 33.68%- 62.87%* 48.07% 0%

Hoeffding-Tree Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 64.26%* 64.92%* 62.7%* pal 0% 51.66% 53.82% 49.1%
conf 35.74%- 0% 51.46% 48.92% conf 48.34% 0% 51.68% 45.17%
ran 35.08%- 48.54% 0% 49.86% ran 46.18% 48.32% 0% 44.48%
semi 37.3%- 51.08% 50.14% 0% semi 50.9% 54.83% 55.52% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 63.19%* 69%* 66.55%* pal 0% 53.06% 56.71% 50.16%
conf 36.81%- 0% 52.88% 51.24% conf 46.94% 0% 52.12% 48.48%
ran 31%- 47.12% 0% 45.48% ran 43.29% 47.88% 0% 45.42%-
semi 33.45%- 48.76% 54.52% 0% semi 49.84% 51.52% 54.58%* 0%

Naive Bayes Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 58.97%* 64.66%* 60.7%* pal 0% 51.25% 56.1%* 55.4%*
conf 41.03%- 0% 54.57%* 51.35% conf 48.75% 0% 52.32% 55.41%*
ran 35.34%- 45.43%- 0% 47.26% ran 43.9%- 47.68% 0% 51.26%
semi 39.3%- 48.65% 52.74% 0% semi 44.6%- 44.59%- 48.74% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 63.17%* 74.5%* 67.24%* pal 0% 54.55% 56.9%* 47.93%
conf 36.83%- 0% 60.92%* 53.65% conf 45.45% 0% 56.51% 48.99%
ran 25.5%- 39.08%- 0% 41.18%- ran 43.1%- 43.49% 0% 42.94%-
semi 32.76%- 46.35% 58.82%* 0% semi 52.07% 51.01% 57.06%* 0%

K-Nearest Neighbour (K=3) Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 24.18%- 59.4% 30.34%- pal 0% 27.53%- 50% 25%-
conf 75.82%* 0% 76.02%* 65.32%* conf 72.47%* 0% 69.52%* 59.46%
ran 40.6% 23.98%- 0% 32.74%- ran 50% 30.48%- 0% 30.81%-
semi 69.66%* 34.68%- 67.26%* 0% semi 75%* 40.54% 69.19%* 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 25%- 68.59%* 43.27%- pal 0% 18.64%- 46.25% 27.55%-
conf 75%* 0% 80.57%* 80.75%* conf 81.36%* 0% 78.24%* 72.89%*
ran 31.41%- 19.43%- 0% 35.05%- ran 53.75% 21.76%- 0% 30.5%-
semi 56.73%* 19.25%- 64.95%* 0% semi 72.45%* 27.11%- 69.5%* 0%

Logistic Regression Classifier

Posterior from Classifier, 20 labels Posterior from KFE, 20 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 40.57% 37.5%- 45.31% pal 0% 51.46% 46.05% 49.27%
conf 59.43% 0% 50.54% 55.75%* conf 48.54% 0% 44.09% 47.43%
ran 62.5%* 49.46% 0% 56.52%* ran 53.95% 55.91% 0% 51.63%
semi 54.69% 44.25%- 43.48%- 0% semi 50.73% 52.57% 48.37% 0%

Posterior from Classifier, 40 labels Posterior from KFE, 40 labels
StrategyName pal conf ran semi StrategyName pal conf ran semi
pal 0% 41.21%- 42.01% 43.53% pal 0% 60.13%* 55.84% 58.13%*
conf 58.79%* 0% 52.66% 54.78% conf 39.87%- 0% 44.03% 49.68%
ran 57.99% 47.34% 0% 48.78% ran 44.16% 55.97% 0% 53.59%
semi 56.47% 45.22% 51.22% 0% semi 41.88%- 50.32% 46.41% 0%


