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ABSTRACT
For high-fidelity Virtual Auditory Space (VAS), binaural synthesis requires individualized Head-Related
Transfer Functions (HRTF). An alternative to exhaustive measurement of HRTF consists in measuring a set
of representative HRTF in a few directions. These selected HRTF are considered as representative because
they summarize all the necessary spatial and individual information. The goal is to deduce the HRTF in
non-measured directions from the measured ones by appropriate modeling. Clustering is applied in order
to identify the representative directions, but the first issue relies on the definition of a relevant distance
criterion. The paper presents a comparative study of several criteria taken from literature. A new insight in
HRTF (dis)similarity is proposed.

1. INTRODUCTION

Binaural synthesis is a powerful tool for render-
ing 3D audio scene. Sound spatialization is based
on binaural filters derived from the Head-Related
Transfer Function (HRTF), which describes the
acoustic path between the sound source and the lis-
tener’s ears. HRTF highly depends on the individual
morphology, but acquiring individualized HRTF is
still a key issue of current research in binaural tech-
nologies. One solution is HRTF measurement, which
is quite long and uncomfortable for subjects [1] [2]

[3] [4]. What’s more individual HRTF measurement
should be discarded for commercial use of binaural
technologies on a massive scale. Another solution is
BEM modeling [5] [6], but this method does not pro-
vide accurate modeling in high frequencies because
of computational limitations.

A third approach is investigated in the present pa-
per. The idea is to measure HRTF only in a few
directions. It is based on data reduction performed
by HRTF clustering [7] [8]. The HRTF database
is analyzed according to a given criterion of HRTF
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similarity focused on the magnitude spectrum1 of
HRTF. As a result, the HRTF are grouped into
several clusters, which denotes the main features
of HRTF. For each cluster, a representative HRTF
is identified as the closest HRTF to all the HRTF
contained in the cluster. Therefore, it is intended
that one given HRTF in any direction can be de-
duced from the HRTF measured in the representa-
tive directions, which suggests a simplified protocol
of HRTF measurement [9]. Several methods, such as
HRTF interpolation [8] or neural network modeling
[9], are available for deriving HRTF in any direction
from the representative HRTFs. This issue will not
be dealt with in the present paper, which will be
focused on the first step of HRTF clustering.

However, HRTF clustering relies on a similarity or
distance criterion, which should be carefully defined
according to the data considered. Several distance
criteria designed for HRTF are available from litera-
ture, however, they are not specific to HRTF cluster-
ing. It is intended to compare them when they are
applied to HRTF clustering. First, an overview of
HRTF (dis)similarity criteria2 will be given. Five
distance criteria are selected. They will be first
examined only from the point of view of HRTF
(dis)similarity (A priori assessment), disregarding
clustering purposes. Then their performances for
HRTF clustering will be assessed (A posteriori as-
sessment), after a brief recall of clustering method-
ology. The paper will conclude by summarizing the
main results of the two studies (a priori and a pos-
teriori assessments). By merging the two points of
view, it will be investigated whether one particular
criterion stands out from the others or not.

2. OVERVIEW OF DISTANCE CRITERIA
USED FOR HRTF SIMILARITY

The goal of a distance criterion for HRTFs is to
quantify the (dis)similarity between two HRTFs. In
the present paper, the HRTF (dis)similarity will be

1The phase spectrum, which is related to temporal cues
such as ITD (Interaural Time Difference), is not considered
here.

2It should be noticed that some criteria used in the follow-
ing may be not considered as ”pure” distance criteria accord-
ing to a mathematical sense, insofar as they do not fulfill all
the properties of a mathematical distance.

judged only from the point of view of signal process-
ing. The HRTFs are compared according to their
magnitude spectrum. The distance criterion will be
used here for clustering purposes. It is intended to
identify common features within the HRTFs of a
whole database, in order to sort HRTFs by similar-
ity. Apart for clustering, distance criteria are also
required for HRTF modeling purposes, in order to
compare the modeled HRTF with the original one
[9]. For these various problems, several distance cri-
teria have been defined. An exhaustive list of all the
criteria available from literature is beyond the scope
of our study. Only five “standard” criteria will be
considered in the following.

2.1. Definition of the distance criteria

2.1.1. MSE Criteria

The first criteria, which is certainly the most obvi-
ous, is the well-known MSE (Mean Square Error)
distance criterion. It is defined as:

CMSE =
1
N

N∑

i=1

[H1(i)−H2(i)]2 (1)

where H1(i) is the magnitude spectrum of one HRTF
and H2(i) that of another HRTF. The index i refers
to the frequency index, and N is the number of FFT
points.

The MSE criterion can be modified by taking into
account the frequency selectivity of the auditory sys-
tem [10]. Since the auditory ability of frequency
analysis is poorer for high frequencies than for low
frequencies, it is proposed to lower the high frequen-
cies part by frequency weighting. The frequency
selectivity is well described by the concept of the
critical bands, the bandwidth of which follows the
frequency resolution of the auditory system. The
critical bandwidth is 100 Hz for low frequencies (fre-
quencies below 500 Hz) and increases up to 3500 Hz
for f=13500 Hz. Its value (in Hz) is given for fre-
quency f (in kHz) by (“Munich” Formula [10]):

∆(f) = 25 + 75(1 + 1.4F 2)0.69. (2)

Thus the frequency weights α(i) are computed as
the inverse of the critical bandwidth:

α(i) =
1

a0∆(fi)
(3)
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Fig. 1: Frequency weighting according to critical
band

where a0 is a normalization value:

a0 =
N∑

i=1

1
∆(fi)

ensuring that:
N∑

i=1

α(i) = 1.

Fig. 1 illustrates the frequency weights. The MSE
criterion including frequency weighting according to
the critical bands (which will be referred to as the
CB criterion) is thus defined by:

CCB =
1
N

N∑

i=1

{α(i)[H1(i)−H2(i)]}2 (4)

2.1.2. Fahn Criterion

HRTF clustering has been already investigated by
Fahn & al for HRTF interpolation purposes [8], a
problem very close to our study. The memory cost
of binaural synthesis is high if the HRTF measured
for all the directions are stored. One solution is
to interpolate HRTF in any direction from a lim-
ited number of HRTF stored in a few directions.
But there are many ways to chose these “useful”
HRTF. One of this method is clustering and Fahn &
al showed that this latter gave better interpolation
than uniform sampling. The performance evaluation
was based on a “reconstruction error” defined as:

CF =
∑N

i=1[H1(i)−H2(i)]2∑N
i=1[H1(i)]2

(5)

This criterion is the third distance criteria used in
our study and will be called the Fahn criterion. It
differs from the MSE criterion mainly by the fact
that the MSE distance is weighted by the energy of
one HRTF.

2.1.3. Avendano Criterion

The fourth criterion is due to Avendano & al, who
have introduced a new “error measure” in a paper
about the modeling of the contralateral HRTF [11].
This error is based on the MSE distance expressed
on a dB scale:

CA = 10log10

{∑N
i=1[H1(i)−H2(i)]2∑N

i=1[H1(i)]2
+ 1

}
. (6)

Another advantage of this error criterion is that zero
error (i.e. perfect modeling) does not lead to infinity,
but to 0 dB, which is more relevant.

2.1.4. Durant Criterion

The last criterion is given by Durant & al in a study
about filter design based on Genetic Algorithm for
HRTF approximation. The authors have proposed
a modified error measure computed as:

CD =
1
N

N∑

i=1

{
20log10

[
H2(i)
H1(i)

]
− d̄

}2

(7)

with:

d̄ =
1
N

N∑

i=1

20log10
[
H2(i)
H1(i)

]
.

In this criterion, the distance between the two
HRTFs is evaluated by magnitude ratio instead of
magnitude difference. As the Avendano criterion it
is expressed on a dB scale. With the parameter d̄,
the authors intended to discard the effect of overall
gain mismatch. This idea is clever for HRTF mod-
eling, since the reproduction of the main features of
the spectral magnitude (i.e. the peaks and notches)
is the first goal. Often it is considered that the ab-
solute level is secondary. From Equ. 7, it can also
be noticed that the Durant criterion is similar to a
variance.

2.2. A priori assessment

The previous criteria are first examined in order to
assess how they account for HRTF (dis)similarity.
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Fig. 2: HRTF magnitude spectrum (dB) in function
of the azimuth angle in the horizontal plane (Left ear
of subject 003 taken from the CIPIC database): “Po-
lar” representation of HRTF magnitude spectrum,
where the radius corresponds to the frequency axis
and the angle to the azimuth angle.

The HRTF database of the CIPIC is considered [4].
Under the assumption that increasing angular dif-
ference between HRTF direction leads to increasing
HRTF dissimilarity3, the behavior of each criterion
is checked for various pairs of HRTF corresponding
to low and high angular mismatch.

2.2.1. Methodology

The goal is to collect a set of HRTF pairs with
controlled dissimilarity, in order to assess the dis-
tance criteria. The HRTF database of the CIPIC
[4], which provides a huge amount of HRTF data
with 45 individuals (including one dummy head) and
1250 directions measured in the 3D sphere for each
subject, will be used. Fig. 2 depicts the variation
of the magnitude spectrum of HRTF in function of
azimuth angle in the horizontal plane for one subject
of the CIPIC database. Since the HRTFs illustrated
in Fig. 2 are measured from the left ear, the HRTF
magnitude is the highest on the left and decreases
for right locations because of the acoustic diffraction

3In this case, the HRTF dissimilarity is related to a local-
ization error.

induced by the head. Peaks and notches, which are
mainly due to pinnae resonance, are also observed.
Going from the left to the right, the magnitude spec-
trum varies quite continuously with the azimuth an-
gle. Therefore it may be expected that when com-
paring two HRTFs located at azimuth angle θ1 and
θ2 for instance in the front horizontal plane, their
dissimilarity increases with their angular difference,
which defines their angle mismatch:

dθ = |θ2 − θ1|. (8)

On the other hand, from a psychoacoustic point of
view, we know that increasing angular mismatch
leads to increasing error of localization. Thus it can
be reasonably assumed that the HRTFs in the hor-
izontal plane provides a wide range of HRTF dis-
similarity. The HRTF dissimilarity relies both on
signal processing (magnitude spectrum) and percep-
tion (localization error). However, before constitut-
ing the HRTF pair, it should be noticed that low
dissimilarity may occur for strong angle mismatch
because of the symmetry between front and rear
HRTFs. For instance if the two HRTFs considered
are taken from two locations which are symmetric
with respect to the interaural axis, the HRTF are
very similar despite a strong angular mismatch (cf.
Fig. 2). Therefore it is preferred to consider sepa-
rately the front and rear HRTFs in order to keep a
confident link between the HRTF dissimilarity and
the angle mismatch. On this condition, the HRTF
dissimilarity varies in a monotone way with the an-
gular mismatch.

In the CIPIC database, 25 directions are measured
in the front horizontal plane, corresponding to az-
imuth angle varying from −80◦ (on the left) to 80◦

(on the right), in the interaural polar coordinates.
From these 25 HRTFs, 300 pairs are obtained with
angular mismatch dθ varying from 5◦ to 160◦. Sev-
eral pairs are associated to the same value of angular
mismatch. In the same way, 300 pairs are also ob-
tained from the rear horizontal plane. Thus a total
of 1200 pairs, including 600 pairs both from the left
and the right ear, is collected for each individual.
The five dissimilarity criteria presented in Section 2
are then evaluated4 for all the individuals available

4When computing the criterion value, the HRTF consid-
ered as H1 is always the HRTF with maximum energy, i.e.
corresponding to the azimuth the more on the left for the left
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in the CIPIC database [4]. The data obtained from
all the individuals, the left/right and the front/rear
sets are merged for each value of angle mismatch.
The statistical analysis of the criteria values in func-
tion the angle mismatch is presented in the following
Section.

2.2.2. Results

The behavior of the various criteria in function of the
angular mismatch are displayed in Fig. 3. The re-
sults are plotted as blue boxes delimited by the lower
(25%) and upper (75%) quartile. The median is de-
picted by a red line. In addition, green curves show
the 5th (lower curve depicted by crosses) and 95th
(upper curve depicted by circles) centiles, in order
to illustrate the extent of the rest of the data. Since
the range of values strongly varies from one criterion
to another, the values displayed are all normalized
by the maximum value of the 95th centile, in order
to compare the criteria with the same scale. The
values obtained before normalization for 5, 10 and
15◦ angle mismatch are given in Tab. 1.

A confident criterion should have monotone varia-
tion with increasing HRTF dissimilarity and low de-
viation for equivalent levels of dissimilarity, because
it is intended to link criteria values with angular mis-
matches. From Section 2, it should be kept in mind
that all the criteria are null or positive. The criterion
value is null for perfect similarity (i.e. H1 = H2) and
increases for increasing dissimilarity. In Fig. 3 the
five criteria all exhibit almost linear increase with
the angular mismatch. However, the values of the
Fahn and Avendano criteria reach a ceiling for the
highest angle mismatch (i.e. for mismatch greater
than 100◦). Except for Durant criterion, the de-
viation also increases with the angular mismatch.
This phenomenon is particularly strong for the MSE
and the CB criteria. Low deviation for small differ-
ence of azimuth is not surprising, since it can be
observed from Fig. 2 that for small variation of az-
imuth, the HRTF variations are very close, whereas
for greater variation of azimuth the HRTF variation
are less consistent. The low deviation for small an-
gular mismatch provides fine discrimination for low

ear set and the more on the right for the right ear set. This
choice has no influence for most of the criteria except for the
Fahn and Avendano criteria, which include a normalization
by the energy of the HRTF H1.

Criterion 5◦ 10◦ 15◦

CMSE 0.0319 0.0677 0.116
CCB 3.8310−6 8.10−6 1.3510−6

CF 0.0321 0.0691 0.108
CA 0.137 0.29 0.446
CD 11.8 16.3 20.3

Table 1: Median value of the 5 criteria for 5, 10, 15◦

angle mismatch.

Criterion 5◦ 10◦ 15◦

CMSE 0.0624 0.139 0.241
CCB 6.10−6 8.8110−6 1.30−6

CF 0.0376 0.0609 0.0827
CA 0.158 0.246 0.323
CD 12.7 16.0 17.1

Table 2: Interquartile range of the 5 criteria for 5,
10, 15◦ angle mismatch.

dissimilarity. From this point of view, the constant
deviation of the Durant criterion is a drawback.

It is also worth examining the extent of criteria val-
ues (i.e. the range delimited by the lower and upper
green curves in Fig. 3) in function of the angular
mismatch. It is striking that the range of criteria
values for a given angular mismatch is wider for the
MSE and the CB criteria than for the other criteria.
Particularly, for the MSE criterion, the 5th-centile
curve keeps very close to zero whatever the angular
mismatch is, which means that this criterion may
give low value although the HRTF dissimilarity is
quite strong, which is not confident. The same de-
fect is observed for the CB criterion. On the con-
trary, the Fahn and Avendano criteria show narrow
extent of values, which suggests that these criteria
provide a fine discrimination of HRTF dissimilarity.
From these results, these two criteria can be consid-
ered as the most suited as distance criteria for HRTF
dissimilarity. The influence of magnitude smoothing
[13] of HRTF spectrum has been also studied, but no
difference with the previous results has been pointed
out.

2.3. Criterion calibration

When using dissimilarity criteria, one difficulty is to
link the criterion values with dissimilarity level in
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Fig. 3: A priori assessment of the dissimilarity criteria: criterion values in function of the angular mismatch.
From left to right and top to bottom: MSE criterion, CB criterion, Fahn criterion, Avendano criterion, and
Durant criterion. The blue boxes describe the lower and upper quartile. The median is depicted by a red
line. The green curves show the 5th (lower curve depicted by crosses) and 95th (upper curve depicted by
circles) centiles.

AES 120th Convention, Paris, France, 2006 May 20–23

Page 6 of 14



Nicol et al. Similarity criterion for HRTF clustering

terms of the compared data. Considering two dif-
ferent pairs of HRTFs, if we suppose for instance
that the MSE criterion gives a value of 0.03 for one
pair and a value of 0.12 for the other, it is not obvi-
ous to know if these values denote low or high dis-
similarity. From the previous analysis (cf. Section
2.2.2), we have now some knowledge about the phys-
ical and psychoacoutic meaning of the dissimilarity
criteria. First, Tab. 1 shows that a MSE criteria
value of 0.03 corresponds to an angular mismatch
of 5◦. The dissimilarity can be interpreted in two
ways, by considering: either the difference between
the HRTF magnitude spectrum or the localization
mismatch between the two HRTFs. In Fig. 2, it can
be observed that an angular mismatch of 5◦ leads to
small variation of magnitude spectrum. In terms of
auditory perception, a localization mismatch of 5◦

is very close to the lowest Minimum Audible Angle
(MAA) [14] and so can be considered as hardly no-
ticeable5. As a result, an angular mismatch of 5◦

is a low level of dissimilarity, whereas a mismatch
greater than 10◦ corresponds to a noticeable level of
dissimilarity, which allows us to calibrate each cri-
terion. Tab. 1 gives the calibration values for the 5
criteria. Moreover, it is also interesting to know for a
given step of decrease or increase of a criterion value
whether this step is significant or not. The curves
plotted in Fig. 3 can be used to interpret a given
increase or decrease in terms of angular mismatch
in order to assess its significance.

3. A POSTERIORI COMPARISON OF DIS-
TANCE CRITERIA VIA HRTF CLUSTERING

After the previous a priori study, the present section
will present an a posteriori study, where the five
(dis)similarity criteria described in Section 2 will be
assessed for clustering purpose.

Among clustering methods [20] the Self-Organizing
Map (SOM) [15] is an excellent tool for data survey
because it has prominent visualization properties. It
creates a set of prototype vectors representing the
data set and carries out a topology preserving pro-
jection of the prototypes from the N -dimensional

5However it should be noticed that the auditory perception
of HRTF mismatch is not so simple and can not be considered
only as a pure localization mismatch in a thorough analysis.
Perception of spectrum difference should also be taken into
account. The present paper provides only a first analysis.

input space onto a low-dimensional grid (two dimen-
sions in the present paper). This ordered grid can be
used as a convenient visualization surface for show-
ing different features of the data6 [16]. The SOM
method is used in the following sections to compare
the five criteria, by judging their ability to produce
an homogeneous clustering and low quantification
errors.

3.1. Methodology - Organization of the experi-
ment

The HRTF data used for the clustering are first pre-
sented. Then it is described how the criteria are in-
cluded in the training of a SOM. Thirdly, the three
axis of the experiment are explained.

3.1.1. The data

Clustering of one or two HRTFs

In the CIPIC database (see Section 2.2.1), each indi-
vidual is represented by his(her) HRTFs for various
azimuths and elevations (θ,φ) described in the in-
teraural polar coordinates. A total number of 1250
directions is available for each individual (see figure
4).

Fig. 4: Graphical description of the 1250 directions
(CIPIC database of HRTF).

For each position (θ,φ), the HRTF is therefore rep-
resented by a vector of 100 components, one compo-
nent per frequency. In the following study, the in-
put vectors considered for HRTF clustering consists
either of 100 components (if only one ear is consid-
ered) or of 200 components (if the ipsilateral and
contralateral HRTF are considered) (see Fig. 5).

To cluster HRTFs one can considers input vectors
which are represented with 100 components if only
one ear is considered and represented as a vector
with 200 components if the two ears are considered
(see Fig. 5).

6These visualization surfaces are not shown in this paper
because the main interest here is to rank the criteria.
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Fig. 5: Using one or two HRTFs.

HRTF preprocessing

The amplitude scale of the raw HRTFs is linear. It
is transformed into a logarithmic scale closer to our
auditory perception than linear scale (see [17] for
instance).

In terms of the amplitude range, we consider that
a lowest threshold of −80dB (10−4 in the linear
scale of amplitude) is sufficient from a psychoacous-
tic point of view. The input vectors (HRTF) are
transformed as follows:

Hl(λ,θ,φ)(i) = 20 log10

(
max(Hλ,θ,φ(i), 10−4)

)
(9)

where H denotes a HRTF in the linear scale, Hl a
HRTF in the logarithmic scale and λ refers to the
individual.

An example of Hls is given in Fig. 6 for the individ-
ual 003 of the database and for three positions: (θ=-
80, φ=-45), (θ=0, φ=90) and (θ=80, φ =230). Even
on a log-scale, the spectra exhibit strongly localized
features (i.e. peaks and notches) which are critical
for the sound localization. The accurate modeling
of such features from a few measurements only is
therefore a real challenge.

Statistical Learning Set

When clustering data, it is well known that it is nec-
essary to split the data into several sets: a training
set used to adjust the parameters of the model and
a test set to estimate the generalization error of the
modeling (in order to prevent from over-training).

In our case, the CIPIC database is composed of 45
individuals, each described by 1250 or 2500 HRTFs.
The data have been split into two sets : 23 individ-
uals for the training set and 22 individuals for the
test set. Therefore the training set consists of 1250
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Fig. 6: HRTFs measured for three directions: (θ=-
80, φ=-45), (θ=0, φ=90) and (θ=80, φ =230) - In-
dividual 003 of the CIPIC database.

x 23 = 28750 vectors and the test set of 1250 x 22
= 27500 vectors.

3.1.2. Applying the five distance criteria into a
SOM algorithm

The basic SOM algorithm

The basic SOM algorithm7 is described below8. All
the SOM in this article are square maps with hexag-
onal neighborhoods and are initialized with Princi-
pal Component Analysis (PCA). First the size of the
Self-Organizing Map (SOM) [15] i.e k, the number
of clusters and the topology of the SOM have to be
fixed.

The basic SOM algorithm comprises five steps:
(A) choose the number, k, of clusters (H1 prototypes);
(B) choose a topology of the map;
(C) initialization : choose random values for the k pro-
totypes;
(D) for all iteration t

(D-1) random selection of an example H2 from the
training set,
(D-2) election of the nearest prototype (the “win-
ner”) using a distance criterion, for example if the
mean squared error is used

arg mink‖Hk
1 −H2‖ (10)

7All the experimentation on SOM have been done with the
SOM Toolbox package for Matlab c© [18]

8Here the algorithm is presented in a very simple way just
to introduce the ”winner” notion, for more details see [15]
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arg mink

[
1

N

N∑
i=1

[Hk
1 (i)−H2(i)]

2

]
(11)

where k denote the kth prototype of the map and i
refers to the frequency index.
(D-3) bring the winner near the example H2 with a
learning rate α;
(D-4) bring the neighbours of the winner, at this
iteration t, near the example H2

(D-5) go to step D-1 until convergence is not
reached9.

(E) end

Projecting the position information (this informa-
tion is not used for the construction of the map) on
the map allows to investigate the distinctive profiles
of the clusters in terms of position and dispersion
(see Fig. 7).

Fig. 7: Illustration of clusters of HRTFs.

At the end of the training the whole test set is pre-
sented to the map. For each example of this test set
a winner is selected using the criterion used to build
the map.

The modified SOM algorithm

The training procedure includes the notion of “win-
ner” using a distance criteria. It is straightforward
that the equation 11 can be changed by any of the
criteria described in section 2 to elect the winner.

It should be remarked that there is only a scale
difference between the Fahn and Avendano criteria
(Section 2): the former is based on a linear scale,
whereas the latter is logarithmic. In both cases, the

9The convergence is obtained when winners do not move
significantly.

election of the winner prototype gives the same re-
sult. The clustering results obtained with a SOM
trained with either the Fahn or the Avendano crite-
ria would be the same. Therefore only the Avendano
results will be presented below.

3.1.3. Three axis of investigation
The study focuses on three issues : (1) the choice of
the distance criterion, described in section 2; (2) the
number of clusters (k); (3) the input data.

For (1) the four distance criteria have been described
above.

For (2) : The number of clusters corresponds to the
SOM size. For instance a SOM with a topology 4x4
contains 16 clusters. The final aim of this study is to
find few representative HRTFs so only small value
of k are considered. SOM larger than 8x8 (k = 64)
have not been examined10.

For (3) : These experiment includes two ways of
considering the input data. Either the left and right
HRTF are considered independently, i.e. the input
vector is: H = H1L or H1R (vector of length N). Or
the left and right HRTF are pulled together (see Fig.
5), in order to take advantage of shared information
between the left and right HRTF about the overall
diffraction by the listener’s head. The input vector
is then: H = [H1L H1R] (vector of length 2*N). It
is examined whether it is useful to consider both
the ipsilateral and contralateral HRTF for describing
a direction and if taking into account this solution
provides any advantage.

3.2. Clustering results

3.2.1. Introduction

Three errors are defined to compare the clustering
performances of the distance criteria.

• The global average quantification error is de-
fined as:

Eq =
T∑

t=1

P∑
p=1

N∑

i=1

|Hk
1 (i)−H2(i)|, (12)

10The following information may be useful for the readers
who want to carry out the same experiments using Matlab
Tool box [18]. The number of iterations for the rough tuning
phase is 1500 for 2x2 and 4x4 SOMs, and 4000 iterations for
6x6 and 8x8 SOMs; the number of iterations for fine tuning
phase is 500 for all SOM size. The time need to train all the
SOM used in this article has been 30 days on a Pentium IV
3.8 GHz.
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where H2 denotes an input HRTF presented to the
map, H1 represents one of the k prototypes (the win-
ner according to a given criterion), T is the number
of individuals in the test set, P is the number of con-
sidered positions and i refers to the frequency index.
This global error versus the SOM size and the cri-
teria is shown on Fig. 8(a). This error is thus a
very global error which merges all individuals of the
test set (22), all positions (1250) and all frequencies
(100).

• The average quantification error per position
whatever individual λ is defined as:

Eq(λ, θ, φ) =
N∑

i=1

|Hk
1 (i)−H2(i)| (13)

The dispersion of this average quantification error
per position is illustrated by Fig. 8(b) for each cri-
terion, given a SOM size. This statistical analysis
uses all the positions (1250) and all the individu-
als (22) of the test set. Therefore 27500 errors are
aggregated inside each box plot.

• The quantification error per frequency is de-
fined as:

Eq(i) = |H1(i)−H2(i)|, (14)

The dispersion of the quantification error per fre-
quency is depicted for each criterion in Fig. 8(c),
8(d), 8(e) and 8(f). As previously the statistics in-
clude all the positions (1250) and all the individuals
(22) of the test set, which leads to 27500 errors for
each frequency.

These three errors are used below to compare the
four criteria considering one or two HRTFs as input
data.

3.2.2. Clustering the right ear HRTFs

In this first experiment, the input data consists only
of the right ear HRTFs. Fig. 8(a) shows the influ-
ence of the number of clusters on the average error
(Equ. 12) for each criterion. The common trend is
the decrease of the average error when the size of
the SOM increases. Of course the error will be null
if the number of clusters is equal to the number of
vectors constituting the training set11. It is intended

11For instance the asymptotic result for the MSE criterion
is close to 3 dB for 144 clusters [19].

to reach a good compromise between the number of
clusters and the error. From Fig. 8(a) it can be
seen that a SOM of size 6x6 (36 clusters) gives a
reasonable error for each criterion. What’s more a
SOM size of 8x8 does not provide a great improve-
ment. Based on this error, the ranking order of the
four criteria is (beginning from the best): MSE (1),
Avendano (1), CB (2) and Durant (3). The aver-
age quantification error obtained by the MSE and
Avendano criteria for a SOM size of 6x6 is 3.8 dB.
In terms of angular mismatch (cf. Section 2.2.2),
this error value can be considered as equivalent to
the level of dissimilarity observed in average between
two HRTFs taken in the horizontal plane with an
azimuth difference of 75◦. This is a strong dissimi-
larity, but the level of data reduction is also consid-
erable, since clustering by a 6x6 SOM means that
27500 vectors are described by only 36 representa-
tives.

Now the SOM size is fixed to 6x6 (36 clusters):

• Fig. 8(b) describes the average error per posi-
tion (Equ. 13) versus the criterion. The “best”
criterion is the one which provides the small-
est quantification error (i.e. the smallest me-
dian value) with low dispersion (i.e. narrow box
plot). The same ranking order as in Fig. 8(a)
is derived from Fig. 8(b), considering either the
median value of the error or its dispersion. How-
ever it is still impossible to decide between the
MSE and Avendano criteria.

• Fig. 8(c), 8(d), 8(e), 8(f) show the distribu-
tion of average errors (Equ. 14) in function
of frequency for the four criteria. The crite-
ria are judged according to the median value of
the quantification error and the size of the box
plot. The conclusions are the same as for the
previous results (Fig. 8(a) and 8(b)): i.e. MSE
(1), Avendano (1), CB (2) and Durant (3).

As a result, the MSE and Avendano criteria stands
out as the best criteria from this experiment. They
should be considered as equivalent without further
information.

3.2.3. Clustering both the right and left ear
HRTFs

The results obtained when using both the ipsilateral
and contralateral HRTF (H1L and H1R) are pre-
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Fig. 8: From left to right and up to down : (a) Average quantification error (dB) (see Equ. 12) versus SOM
size for each criterion (MSE, CB, Avendano and Durant criterion); (b) Average quantification error per
position (see Equ. 13) for each criterion for a SOM which contains 36 clusters (6x6); (c)(d)(e)(f) Average
quantification error per frequency (see Equ. 14) respectively for the MSE, CB, Avendano and Durant
criterion, for a SOM which contains 36 clusters (6x6). (c)(d)(e)(f) : The blue boxes describe the lower and
upper quartile. The median is depicted by a red line. The green curves show the 5th (lower curve depicted
by crosses) and 95th (upper curve depicted by circles) centiles.
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sented12 in Fig. 9(a) to 9(f). The quantification
error is slightly greater than when considering only
the right ear HRTFs, but the difference is poorly
significant13. A detailed analysis of the figures leads
to the same ranking order of the distance criteria as
previously.
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Fig. 10: Combining the left and right ear. Each plot
depicts the concatenated HRTFs H1 = [H1LH1R]
represented in log-scale (see equation 9).

At first sight it may be surprising that considering
both the ipsilateral and contralateral HRTF for de-
scribing a direction does not provide any advantage.
This result suggests that the information contained
in H = [H1LH1R] is not greater, in the sense of clus-
tering, than the information provided only by H1L

or H1R. More precisely the additional information
conveyed by the HRTFs of the second ear is greater
than the information of the first ear for certain posi-
tions (i.e. when the second ear is the ipsilateral one),
but noisier for other positions (i.e. when the second
ear is the contralateral one). This phenomenon is
illustrated in Fig. 10.

In Fig. 10, the 100 first components on both curve
represent the signal perceived by the left ear and the
100 following components are the signal perceived
by the right ear. The right ear is illuminated by the

12The 200 frequencies are used to elect the winner (see sec-
tion 3.1.2) but only the 100th frequencies are used to compute
the errors presented here since one wants to compare to the
results presented in section 3.2.2

13Except for Durant which is realy improved using the two
HRTFs on a position

sound source for location (θ = −40,φ = −45), but is
shadowed for location (θ = 45,φ = −45). This is the
opposite for the left ear. It is obvious that including
the second ear HRTFs in the clustering algorithm
adds information for the first location, whereas it
adds only noise for the second location. Therefore
considering all the database using two HRTFs for
each position does not give any improvement.

4. CONCLUSION

HRTF (dis)similarity has been investigated through
five distance criteria taken from literature. The cri-
teria were assessed and compared in two ways: first
by examining their behavior towards a sample of
HRTFs with “controlled” dissimilarities, which are
linked to various levels of localization mismatch, sec-
ond by evaluating their performances for HRTF clus-
tering. It is striking that the two studies point out
the same criterion, namely the Avendano criterion.
In addition, it has been shown how to link the value
of a distance criterion to a physical scale of HRTF
dissimilarity, in order to know whether a given value
means either a low or a high dissimilarity, which is
of prime interest when using distance criteria.

HRTF clustering has been used successfully for re-
ducing the size of a HRTF database. Input data,
which consists of 27500 HRTFs, can be described by
only 36 representatives. The study first considered
only one HRTF by direction. It was also examined
whether it is useful to consider both the ipsilateral
and contralateral HRTF for describing a direction,
but the results suggest that this solution provides no
advantage.

From the HRTF representatives it is expected to de-
rive clever modeling of individualized HRTF, which
will be the next step. Preliminary studies have given
promising results [9]. Beyond data reduction, HRTF
clustering is also a powerful tool for investigating the
spatial and individual dependence of HRTF, which
could be analyzed in the light of auditory perception.
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Fig. 9: From left to right and up to down: (a) Average quantification error (Equ. 12) versus the SOM size
for each criterion (MSE, CB, Avendano and Durant); (b) Average quantification error per position (Equ.
13) for each criterion for a SOM which contains 36 clusters (6x6); (c)(d)(e)(f) Average quantification error
per frequency (Equ. 14) respectively for the MSE, CB, Avendano and Durant criterion, for a SOM which
contains 36 clusters (6x6). (c)(d)(e)(f) : The blue boxes describe the lower and upper quartile. The median
is depicted by a red line. The green curves show the 5th (lower curve depicted by crosses) and 95th (upper
curve depicted by circles) centiles.
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