Looking for a relevant similarity criterion for HRTF clustering: a comparative study

Rozenn Nicol¹, Vincent Lemaire², Alexis Bondu², and Sylvain Busson¹

¹France Telecom R&D, TECH/SSTP, Lannion, France
²France Telecom R&D, TECH/SUSI, Lannion, France

Correspondence should be addressed to Rozenn Nicol (rozenn.nicol@francetelecom.com)

ABSTRACT
For high-fidelity Virtual Auditory Space (VAS), binaural synthesis requires individualized Head-Related Transfer Functions (HRTF). An alternative to exhaustive measurement of HRTF consists in measuring a set of representative HRTF in a few directions. These selected HRTF are considered as representative because they summarize all the necessary spatial and individual information. The goal is to deduce the HRTF in non-measured directions from the measured ones by appropriate modeling. Clustering is applied in order to identify the representative directions, but the first issue relies on the definition of a relevant distance criterion. The paper presents a comparative study of several criteria taken from literature. A new insight in HRTF (dis)similarity is proposed.

1. INTRODUCTION
Binaural synthesis is a powerful tool for rendering 3D audio scene. Sound spatialization is based on binaural filters derived from the Head-Related Transfer Function (HRTF), which describes the acoustic path between the sound source and the listener’s ears. HRTF highly depends on the individual morphology, but acquiring individualized HRTF is still a key issue of current research in binaural technologies. One solution is HRTF measurement, which is quite long and uncomfortable for subjects [1] [2] [3] [4]. What’s more individual HRTF measurement should be discarded for commercial use of binaural technologies on a massive scale. Another solution is BEM modeling [5] [6], but this method does not provide accurate modeling in high frequencies because of computational limitations.

A third approach is investigated in the present paper. The idea is to measure HRTF only in a few directions. It is based on data reduction performed by HRTF clustering [7] [8]. The HRTF database is analyzed according to a given criterion of HRTF
similarity focused on the magnitude spectrum\footnote{The phase spectrum, which is related to temporal cues such as ITD (Interaural Time Difference), is not considered here.} of HRTF. As a result, the HRTF are grouped into several clusters, which denotes the main features of HRTF. For each cluster, a representative HRTF is identified as the closest HRTF to all the HRTF contained in the cluster. Therefore, it is intended that one given HRTF in any direction can be deduced from the HRTF measured in the representative directions, which suggests a simplified protocol of HRTF measurement \cite{9}. Several methods, such as HRTF interpolation \cite{8} or neural network modeling \cite{9}, are available for deriving HRTF in any direction from the representative HRTFs. This issue will not be dealt with in the present paper, which will be focused on the first step of HRTF clustering. However, HRTF clustering relies on a similarity or distance criterion, which should be carefully defined according to the data considered. Several distance criteria designed for HRTF are available from literature, however, they are not specific to HRTF clustering. It is intended to compare them when they are applied to HRTF clustering. This issue will not be dealt with in the present paper, which will be focused on the first step of HRTF clustering.

However, HRTF clustering relies on a similarity or distance criterion, which should be carefully defined according to the data considered. Several distance criteria designed for HRTF are available from literature, however, they are not specific to HRTF clustering. It is intended to compare them when they are applied to HRTF clustering. First, an overview of HRTF (dis)similarity criteria\footnote{It should be noticed that some criteria used in the following may be not considered as “pure” distance criteria according to a mathematical sense, insofar as they do not fulfill all the properties of a mathematical distance.} will be given. Five distance criteria are selected. They will be first examined only from the point of view of HRTF (dis)similarity \textit{(A priori assessment)}, disregarding clustering purposes. Then their performances for HRTF clustering will be assessed \textit{(A posteriori assessment)}, after a brief recall of clustering methodology. The paper will conclude by summarizing the main results of the two studies \textit{(a priori and a posteriori assessments)}. By merging the two points of view, it will be investigated whether one particular criterion stands out from the others or not.

\section{Overview of distance criteria used for HRTF similarity}

The goal of a distance criterion for HRTFs is to quantify the (dis)similarity between two HRTFs. In the present paper, the HRTF (dis)similarity will be judged only from the point of view of signal processing. The HRTFs are compared according to their magnitude spectrum. The distance criterion will be used here for clustering purposes. It is intended to identify common features within the HRTFs of a whole database, in order to sort HRTFs by similarity. Apart for clustering, distance criteria are also required for HRTF modeling purposes, in order to compare the modeled HRTF with the original one \cite{9}. For these various problems, several distance criteria have been defined. An exhaustive list of all the criteria available from literature is beyond the scope of our study. Only five “standard” criteria will be considered in the following.

\subsection{Definition of the distance criteria}

\subsubsection{MSE Criteria}

The first criteria, which is certainly the most obvious, is the well-known MSE (Mean Square Error) distance criterion. It is defined as:

\begin{equation}
C_{MSE} = \frac{1}{N} \sum_{i=1}^{N} [H_1(i) - H_2(i)]^2
\end{equation}

where $H_1(i)$ is the magnitude spectrum of one HRTF and $H_2(i)$ that of another HRTF. The index i refers to the frequency index, and N is the number of FFT points.

The MSE criterion can be modified by taking into account the frequency selectivity of the auditory system \cite{10}. Since the auditory ability of frequency analysis is poorer for high frequencies than for low frequencies, it is proposed to lower the high frequencies part by frequency weighting. The frequency selectivity is well described by the concept of the critical bands, the bandwidth of which follows the frequency resolution of the auditory system. The critical bandwidth is 100 Hz for low frequencies (frequencies below 500 Hz) and increases up to 3500 Hz for f=13500 Hz. Its value (in Hz) is given for frequency f (in kHz) by (“Munich” Formula \cite{10}):

\begin{equation}
\Delta(f) = 25 + 75(1 + 1.4F^2)^{0.69}.
\end{equation}

Thus the frequency weights $\alpha(i)$ are computed as the inverse of the critical bandwidth:

\begin{equation}
\alpha(i) = \frac{1}{a_0\Delta(f_i)}
\end{equation}
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Frequency (Hz)

Fig. 1: Frequency weighting according to critical band

where \(a_0 \) is a normalization value:

\[
a_0 = \sum_{i=1}^{N} \frac{1}{\Delta(f_i)}
\]

ensuring that:

\[
\sum_{i=1}^{N} \alpha(i) = 1.
\]

Fig. 1 illustrates the frequency weights. The MSE criterion including frequency weighting according to the critical bands (which will be referred to as the CB criterion) is thus defined by:

\[
C_{CB} = \frac{1}{N} \sum_{i=1}^{N} \alpha(i)[H_1(i) - H_2(i)]^2
\] (4)

2.1.2. Fahn Criterion

HRTF clustering has been already investigated by Fahn & al for HRTF interpolation purposes [8], a problem very close to our study. The memory cost of binaural synthesis is high if the HRTF measured for all the directions are stored. One solution is to interpolate HRTF in any direction from a limited number of HRTF stored in a few directions. But there are many ways to chose these “useful” HRTF. One of this method is clustering and Fahn & al showed that this latter gave better interpolation than uniform sampling. The performance evaluation was based on a “reconstruction error” defined as:

\[
C_F = \frac{\sum_{i=1}^{N} [H_1(i) - H_2(i)]^2}{\sum_{i=1}^{N} [H_1(i)]^2}
\] (5)

This criterion is the third distance criteria used in our study and will be called the Fahn criterion. It differs from the MSE criterion mainly by the fact that the MSE distance is weighted by the energy of one HRTF.

2.1.3. Avendano Criterion

The fourth criterion is due to Avendano & al, who have introduced a new “error measure” in a paper about the modeling of the contralateral HRTF [11]. This error is based on the MSE distance expressed on a dB scale:

\[
C_A = 10 \log_{10} \left(\frac{\sum_{i=1}^{N} [H_1(i) - H_2(i)]^2}{\sum_{i=1}^{N} [H_1(i)]^2} + 1 \right). \]

Another advantage of this error criterion is that zero error (i.e. perfect modeling) does not lead to infinity, but to 0 dB, which is more relevant.

2.1.4. Durant Criterion

The last criterion is given by Durant & al in a study about filter design based on Genetic Algorithm for HRTF approximation. The authors have proposed a modified error measure computed as:

\[
C_D = \frac{1}{N} \sum_{i=1}^{N} \left(20 \log_{10} \left(\frac{H_2(i)}{H_1(i)} \right) - d \right)^2
\] (7)

with:

\[
d = \frac{1}{N} \sum_{i=1}^{N} 20 \log_{10} \left(\frac{H_2(i)}{H_1(i)} \right).
\]

In this criterion, the distance between the two HRTFs is evaluated by magnitude ratio instead of magnitude difference. As the Avendano criterion it is expressed on a dB scale. With the parameter \(d \), the authors intended to discard the effect of overall gain mismatch. This idea is clever for HRTF modeling, since the reproduction of the main features of the spectral magnitude (i.e. the peaks and notches) is the first goal. Often it is considered that the absolute level is secondary. From Equ. 7, it can also be noticed that the Durant criterion is similar to a variance.

2.2. A priori assessment

The previous criteria are first examined in order to assess how they account for HRTF (dis)similarity.
The HRTF database of the CIPIC is considered [4]. Under the assumption that increasing angular difference between HRTF direction leads to increasing HRTF dissimilarity\(^3\), the behavior of each criterion is checked for various pairs of HRTF corresponding to low and high angular mismatch.

2.2.1. Methodology

The goal is to collect a set of HRTF pairs with controlled dissimilarity, in order to assess the distance criteria. The HRTF database of the CIPIC [4], which provides a huge amount of HRTF data with 45 individuals (including one dummy head) and 1250 directions measured in the 3D sphere for each subject, will be used. Fig. 2 depicts the variation of the magnitude spectrum of HRTF in function of azimuth angle in the horizontal plane for one subject of the CIPIC database. Since the HRTFs illustrated in Fig. 2 are measured from the left ear, the HRTF magnitude is the highest on the left and decreases for right locations because of the acoustic diffraction induced by the head. Peaks and notches, which are mainly due to pinnae resonance, are also observed. Going from the left to the right, the magnitude spectrum varies quite continuously with the azimuth angle. Therefore it may be expected that when comparing two HRTFs located at azimuth angle \(\theta_1\) and \(\theta_2\) for instance in the front horizontal plane, their dissimilarity increases with their angular difference, which defines their angle mismatch:

\[
\delta \theta = |\theta_2 - \theta_1|.
\] (8)

On the other hand, from a psychoacoustic point of view, we know that increasing angular mismatch leads to increasing error of localization. Thus it can be reasonably assumed that the HRTFs in the horizontal plane provides a wide range of HRTF dissimilarity. The HRTF dissimilarity relies both on signal processing (magnitude spectrum) and perception (localization error). However, before constituting the HRTF pair, it should be noticed that low dissimilarity may occur for strong angle mismatch because of the symmetry between front and rear HRTFs. For instance if the two HRTFs considered are taken from two locations which are symmetric with respect to the interaural axis, the HRTF are very similar despite a strong angular mismatch (cf. Fig. 2). Therefore it is preferred to consider separately the front and rear HRTFs in order to keep a confident link between the HRTF dissimilarity and the angle mismatch. On this condition, the HRTF dissimilarity varies in a monotone way with the angular mismatch.

In the CIPIC database, 25 directions are measured in the front horizontal plane, corresponding to azimuth angle varying from \(-80^\circ\) (on the left) to \(80^\circ\) (on the right), in the interaural polar coordinates. From these 25 HRTFs, 300 pairs are obtained with angular mismatch \(\delta \theta\) varying from \(5^\circ\) to \(160^\circ\). Several pairs are associated to the same value of angular mismatch. In the same way, 300 pairs are also obtained from the rear horizontal plane. Thus a total of 1200 pairs, including 600 pairs both from the left and the right ear, is collected for each individual. The five dissimilarity criteria presented in Section 2 are then evaluated\(^4\) for all the individuals available.

\(^3\)In this case, the HRTF dissimilarity is related to a localization error.

\(^4\)When computing the criterion value, the HRTF considered as \(H_1\) is always the HRTF with maximum energy, i.e. corresponding to the azimuth the more on the left for the left.
in the CIPIC database [4]. The data obtained from all the individuals, the left/right and the front/rear sets are merged for each value of angle mismatch. The statistical analysis of the criteria values in function the angle mismatch is presented in the following Section.

2.2.2. Results

The behavior of the various criteria in function of the angular mismatch are displayed in Fig. 3. The results are plotted as blue boxes delimited by the lower (25%) and upper (75%) quartile. The median is depicted by a red line. In addition, green curves show the 5th (lower curve depicted by crosses) and 95th (upper curve depicted by circles) centiles, in order to illustrate the extent of the rest of the data. Since the range of values strongly varies from one criterion to another, the values displayed are all normalized by the maximum value of the 95th centile, in order to compare the criteria with the same scale. The values obtained before normalization for 5, 10 and 15° angle mismatch are given in Tab. 1.

A confident criterion should have monotone variation with increasing HRTF dissimilarity and low deviation for equivalent levels of dissimilarity, because it is intended to link criteria values with angular mismatches. From Section 2, it should be kept in mind that all the criteria are null or positive. The criterion value is null for perfect similarity (i.e. $H_1 = H_2$) and increases for increasing dissimilarity. In Fig. 3 the five criteria exhibit almost linear increase with the angular mismatch. However, the values of the Fahn and Avendano criteria reach a ceiling for the highest angle mismatch (i.e. for mismatch greater than 100°). Except for Durant criterion, the deviation also increases with the angular mismatch. This phenomenon is particularly strong for the MSE and the CB criteria. Low deviation for small difference of azimuth is not surprising, since it can be observed from Fig. 2 that for small variation of azimuth, the HRTF variations are very close, whereas for greater variation of azimuth the HRTF variation are less consistent. The low deviation for small angular mismatch provides fine discrimination for low ear set and the more on the right for the right ear set. This choice has no influence for most of the criteria except for the Fahn and Avendano criteria, which include a normalization by the energy of the HRTF H_1.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>5°</th>
<th>10°</th>
<th>15°</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{MSE}</td>
<td>0.0319</td>
<td>0.0677</td>
<td>0.116</td>
</tr>
<tr>
<td>C_{CB}</td>
<td>3.8310$^{-6}$</td>
<td>8.10$^{-6}$</td>
<td>1.3510$^{-6}$</td>
</tr>
<tr>
<td>C_{F}</td>
<td>0.0321</td>
<td>0.0691</td>
<td>0.108</td>
</tr>
<tr>
<td>C_{A}</td>
<td>0.137</td>
<td>0.29</td>
<td>0.446</td>
</tr>
<tr>
<td>C_{D}</td>
<td>11.8</td>
<td>16.3</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Table 1: Median value of the 5 criteria for 5, 10, 15° angle mismatch.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>5°</th>
<th>10°</th>
<th>15°</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{MSE}</td>
<td>0.0624</td>
<td>0.139</td>
<td>0.241</td>
</tr>
<tr>
<td>C_{CB}</td>
<td>6.10$^{-6}$</td>
<td>8.8110$^{-6}$</td>
<td>1.30$^{-6}$</td>
</tr>
<tr>
<td>C_{F}</td>
<td>0.0376</td>
<td>0.0609</td>
<td>0.0827</td>
</tr>
<tr>
<td>C_{A}</td>
<td>0.158</td>
<td>0.246</td>
<td>0.323</td>
</tr>
<tr>
<td>C_{D}</td>
<td>12.7</td>
<td>16.0</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Table 2: Interquartile range of the 5 criteria for 5, 10, 15° angle mismatch.

dissimilarity. From this point of view, the constant deviation of the Durant criterion is a drawback.

It is also worth examining the extent of criteria values (i.e. the range delimited by the lower and upper green curves in Fig. 3) in function of the angular mismatch. It is striking that the range of criteria values for a given angular mismatch is wider for the MSE and the CB criteria than for the other criteria. Particularly, for the MSE criterion, the 5th-centile curve keeps very close to zero whatever the angular mismatch is, which means that this criterion may give low value although the HRTF dissimilarity is quite strong, which is not confident. The same defect is observed for the CB criterion. On the contrary, the Fahn and Avendano criteria show narrow extent of values, which suggests that these criteria provide a fine discrimination of HRTF dissimilarity. From these results, these two criteria can be considered as the most suited as distance criteria for HRTF dissimilarity. The influence of magnitude smoothing [13] of HRTF spectrum has been also studied, but no difference with the previous results has been pointed out.

2.3. Criterion calibration

When using dissimilarity criteria, one difficulty is to link the criterion values with dissimilarity level in
Fig. 3: A priori assessment of the dissimilarity criteria: criterion values in function of the angular mismatch. From left to right and top to bottom: MSE criterion, CB criterion, Fahn criterion, Avendano criterion, and Durant criterion. The blue boxes describe the lower and upper quartile. The median is depicted by a red line. The green curves show the 5th (lower curve depicted by crosses) and 95th (upper curve depicted by circles) centiles.
Nicol et al. Similarity criterion for HRTF clustering

In the a priori study, the present section will present an a posteriori study, where the five (dis)similarity criteria described in Section 2 will be assessed for clustering purpose.

Among clustering methods [20] the Self-Organizing Map (SOM) [15] is an excellent tool for data survey because it has prominent visualization properties. It creates a set of prototype vectors representing the data set and carries out a topology preserving projection of the prototypes from the N-dimensional input space onto a low-dimensional grid (two dimensions in the present paper). This ordered grid can be used as a convenient visualization surface for showing different features of the data [16]. The SOM method is used in the following sections to compare the five criteria, by judging their ability to produce an homogeneous clustering and low quantification errors.

3.1. Methodology - Organization of the experiment

The HRTF data used for the clustering are first presented. Then it is described how the criteria are included in the training of a SOM. Thirdly, the three axis of the experiment are explained.

3.1.1. The data

Clustering of one or two HRTFs

In the CIPIC database (see Section 2.2.1), each individual is represented by his/her HRTFs for various azimuths and elevations (θ, ϕ) described in the interaural polar coordinates. A total number of 1250 directions is available for each individual (see figure 4).

![Graphical description of the 1250 directions (CIPIC database of HRTF).](image)

Fig. 4: Graphical description of the 1250 directions (CIPIC database of HRTF).

For each position (θ, ϕ), the HRTF is therefore represented by a vector of 100 components, one component per frequency. In the following study, the input vectors considered for HRTF clustering consists either of 100 components (if only one ear is considered) or of 200 components (if the ipsilateral and contralateral HRTF are considered) (see Fig. 5).

To cluster HRTFs one can considers input vectors which are represented with 100 components if only one ear is considered and represented as a vector with 200 components if the two ears are considered (see Fig. 5).

5 However it should be noticed that the auditory perception of HRTF mismatch is not so simple and can not be considered only as a pure localization mismatch in a thorough analysis. Percepcion of spectrum difference should also be taken into account. The present paper provides only a first analysis.

6 These visualization surfaces are not shown in this paper because the main interest here is to rank the criteria.
HRTF preprocessing

The amplitude scale of the raw HRTFs is linear. It is transformed into a logarithmic scale closer to our auditory perception than linear scale (see [17] for instance).

In terms of the amplitude range, we consider that a lowest threshold of \(-80dB \) (\(10^{-4} \) in the linear scale of amplitude) is sufficient from a psychoacoustic point of view. The input vectors (HRTF) are transformed as follows:

\[
H_{l(\lambda,\theta,\phi)}(i) = 20 \log_{10} \left(\max(H_{\lambda,\theta,\phi}(i), 10^{-4}) \right)
\] (9)

where \(H \) denotes a HRTF in the linear scale, \(H_l \) a HRTF in the logarithmic scale and \(\lambda \) refers to the individual.

An example of \(H_l s \) is given in Fig. 6 for the individual 003 of the database and for three positions: \((\theta=-80, \phi=-45), \,(\theta=0, \phi=90) \) and \((\theta=80, \phi =230) \). Even on a log-scale, the spectra exhibit strongly localized features (i.e. peaks and notches) which are critical for the sound localization. The accurate modeling of such features from a few measurements only is therefore a real challenge.

Statistical Learning Set

When clustering data, it is well known that it is necessary to split the data into several sets: a training set used to adjust the parameters of the model and a test set to estimate the generalization error of the modeling (in order to prevent from over-training).

In our case, the CIPIC database is composed of 45 individuals, each described by 1250 or 2500 HRTFs. The data have been split into two sets: 23 individuals for the training set and 22 individuals for the test set. Therefore the training set consists of 1250 x 23 = 28750 vectors and the test set of 1250 x 22 = 27500 vectors.

3.1.2 Applying the five distance criteria into a SOM algorithm

The basic SOM algorithm

The basic SOM algorithm\(^7\) is described below\(^8\). All the SOM in this article are square maps with hexagonal neighborhoods and are initialized with Principal Component Analysis (PCA). First the size of the Self-Organizing Map (SOM) \(^{15}\) i.e. \(k \), the number of clusters and the topology of the SOM have to be fixed.

The basic SOM algorithm comprises five steps:
(A) choose the number, \(k \), of clusters \((H_1 prototypes)\);
(B) choose a topology of the map;
(C) initialization : choose random values for the \(k \) prototypes;
(D) for all iteration \(t \)

\(\text{(D-1) random selection of an example } H_2 \text{ from the training set,} \)
\(\text{(D-2) election of the nearest prototype (the “winner”) using a distance criterion, for example if the mean squared error is used} \)

\[
\text{arg min}_k \| H_1^k - H_2 \| \quad (10)
\]

\(^7\)All the experimentation on SOM have been done with the SOM Toolbox package for Matlab © [18]

\(^8\)Here the algorithm is presented in a very simple way just to introduce the “winner” notion, for more details see [15]
arg \min_k \left[\frac{1}{N} \sum_{i=1}^{N} (H_k^1(i) - H_2(i))^2 \right] \quad (11)

where \(k \) denote the \(k \)th prototype of the map and \(i \) refers to the frequency index.

(D-3) bring the winner near the example \(H_2 \) with a learning rate \(\alpha \);
(D-4) bring the neighbours of the winner, at this iteration \(t \), near the example \(H_2 \);
(D-5) go to step D-1 until convergence is not reached\(^9\).

\(^9\)The convergence is obtained when winners do not move significantly.

3.1.3. Three axis of investigation
The study focuses on three issues: (1) the choice of the distance criterion, described in section 2; (2) the number of clusters (\(k \)); (3) the input data.

For (1) the four distance criteria have been described above.
For (2) : The number of clusters corresponds to the SOM size. For instance a SOM with a topology 4x4 contains 16 clusters. The final aim of this study is to find few representative HRTFs so only small value of \(k \) are considered. SOM larger than 8x8 (\(k = 64 \)) have not been examined\(^10\).

For (3) : These experiment includes two ways of considering the input data. Either the left and right HRTF are considered independently, i.e. the input vector is: \(H = H_{1L} \) or \(H_{1R} \) (vector of length \(N \)). Or the left and right HRTF are pulled together (see Fig. 5), in order to take advantage of shared information between the left and right HRTF about the overall diffraction by the listener’s head. The input vector is then: \(H = [H_{1L} \ H_{1R}] \) (vector of length \(2^N \)). It is examined whether it is useful to consider both the ipsilateral and contralateral HRTF for describing a direction and if taking into account this solution provides any advantage.

3.2. Clustering results
3.2.1. Introduction
Three errors are defined to compare the clustering performances of the distance criteria.

- The global average quantification error is defined as:
 \[Eq = \frac{1}{T} \sum_{t=1}^{T} \sum_{p=1}^{P} \sum_{i=1}^{N} |H_k^1(i) - H_2(i)|, \quad (12) \]

\(^10\)The following information may be useful for the readers who want to carry out the same experiments using Matlab Tool box [18]. The number of iterations for the rough tuning phase is 1500 for 2x2 and 4x4 SOMs, and 4000 iterations for 6x6 and 8x8 SOMs; the number of iterations for fine tuning phase is 500 for all SOM size. The time need to train all the SOM used in this article has been 30 days on a Pentium IV 3.8 GHz.
where H_2 denotes an input HRTF presented to the map, H_1 represents one of the k prototypes (the winner according to a given criterion), T is the number of individuals in the test set, P is the number of considered positions and i refers to the frequency index. This global error versus the SOM size and the criteria is shown on Fig. 8(a). This error is thus a very global error which merges all individuals of the test set (22), all positions (1250) and all frequencies (100).

- The average quantification error per position whatever individual λ is defined as:

$$E(q(\lambda, \theta, \phi)) = \sum_{i=1}^{N} |H^k_i(i) - H(i)|$$ \hspace{1cm} (13)

The dispersion of this average quantification error per position is illustrated by Fig. 8(b) for each criterion, given a SOM size. This statistical analysis uses all the positions (1250) and all the individuals (22) of the test set. Therefore 27500 errors are aggregated inside each box plot.

- The quantification error per frequency is defined as:

$$E(q(i)) = |H_1(i) - H_2(i)|$$ \hspace{1cm} (14)

The dispersion of the quantification error per frequency is depicted for each criterion in Fig. 8(c), 8(d), 8(e) and 8(f). As previously the statistics include all the positions (1250) and all the individuals (22) of the test set, which leads to 27500 errors for each frequency.

These three errors are used below to compare the four criteria considering one or two HRTFs as input data.

3.2.2. Clustering the right ear HRTFs

In this first experiment, the input data consists only of the right ear HRTFs. Fig. 8(a) shows the influence of the number of clusters on the average error (Eqn. 12) for each criterion. The common trend is the decrease of the average error when the size of the SOM increases. Of course the error will be null if the number of clusters is equal to the number of vectors constituting the training set\(^{11}\). It is intended to reach a good compromise between the number of clusters and the error. From Fig. 8(a) it can be seen that a SOM of size 6x6 (36 clusters) gives a reasonable error for each criterion. What’s more a SOM size of 8x8 does not provide a great improvement. Based on this error, the ranking order of the four criteria is (beginning from the best): MSE (1), $Avendano$ (2), CB (2) and $Durant$ (3). The average quantification error obtained by the MSE and $Avendano$ criteria for a SOM size of 6x6 is 3.8 dB. In terms of angular mismatch (cf. Section 2.2.2), this error value can be considered as equivalent to the level of dissimilarity observed in average between two HRTFs taken in the horizontal plane with an azimuth difference of 75°. This is a strong dissimilarity, but the level of data reduction is also considerable, since clustering by a 6x6 SOM means that 27500 vectors are described by only 36 representatives.

Now the SOM size is fixed to 6x6 (36 clusters):

- Fig. 8(b) describes the average error per position (Eqn. 13) versus the criterion. The “best” criterion is the one which provides the smallest quantification error (i.e. the smallest median value) with low dispersion (i.e. narrow box plot). The same ranking order as in Fig. 8(a) is derived from Fig. 8(b), considering either the median value of the error or its dispersion. However it is still impossible to decide between the MSE and $Avendano$ criteria.

- Fig. 8(c), 8(d), 8(e), 8(f) show the distribution of average errors (Eqn. 14) in function of frequency for the four criteria. The criteria are judged according to the median value of the quantification error and the size of the box plot. The conclusions are the same as for the previous results (Fig. 8(a) and 8(b)): i.e. MSE (1), $Avendano$ (1), CB (2) and $Durant$ (3).

As a result, the MSE and $Avendano$ criteria stands out as the best criteria from this experiment. They should be considered as equivalent without further information.

3.2.3. Clustering both the right and left ear HRTFs

The results obtained when using both the ipsilateral and contralateral HRTF (H_{LL} and H_{LR}) are pre-

\(^{11}\)For instance the asymptotic result for the MSE criterion is close to 3 dB for 144 clusters [19].
Fig. 8: From left to right and up to down: (a) Average quantification error (dB) (see Equ. 12) versus SOM size for each criterion (MSE, CB, Avendano and Durant criterion); (b) Average quantification error per position (see Equ. 13) for each criterion for a SOM which contains 36 clusters (6x6); (c)(d)(e)(f) Average quantification error per frequency (see Equ. 14) respectively for the MSE, CB, Avendano and Durant criterion, for a SOM which contains 36 clusters (6x6). (c)(d)(e)(f) : The blue boxes describe the lower and upper quartile. The median is depicted by a red line. The green curves show the 5th (lower curve depicted by crosses) and 95th (upper curve depicted by circles) centiles.
presented12 in Fig. 9(a) to 9(f). The quantification error is slightly greater than when considering only the right ear HRTFs, but the difference is poorly significant13. A detailed analysis of the figures leads to the same ranking order of the distance criteria as previously.

At first sight it may be surprising that considering both the ipsilateral and contralateral HRTF for describing a direction does not provide any advantage. This result suggests that the information contained in $H = [H_{1L} H_{1R}]$ is not greater, in the sense of clustering, than the information provided only by H_{1L} or H_{1R}. More precisely the additional information conveyed by the HRTFs of the second ear is greater than the information of the first ear for certain positions (i.e. when the second ear is the ipsilateral one), but noisier for other positions (i.e. when the second ear is the contralateral one). This phenomenon is illustrated in Fig. 10.

In Fig. 10, the 100 first components on both curve represent the signal perceived by the left ear and the 100 following components are the signal perceived by the right ear. The right ear is illuminated by the sound source for location ($\theta = -40, \phi = -45$), but is shadowed for location ($\theta = 45, \phi = -45$). This is the opposite for the left ear. It is obvious that including the second ear HRTFs in the clustering algorithm adds information for the first location, whereas it adds only noise for the second location. Therefore considering all the database using two HRTFs for each position does not give any improvement.

4. CONCLUSION

HRTF (dis)similarity has been investigated through five distance criteria taken from literature. The criteria were assessed and compared in two ways: first by examining their behavior towards a sample of HRTFs with “controlled” dissimilarities, which are linked to various levels of localization mismatch, second by evaluating their performances for HRTF clustering. It is striking that the two studies point out the same criterion, namely the Avendano criterion. In addition, it has been shown how to link the value of a distance criterion to a physical scale of HRTF dissimilarity, in order to know whether a given value means either a low or a high dissimilarity, which is of prime interest when using distance criteria.

HRTF clustering has been used successfully for reducing the size of a HRTF database. Input data, which consists of 27500 HRTFs, can be described by only 36 representatives. The study first considered only one HRTF by direction. It was also examined whether it is useful to consider both the ipsilateral and contralateral HRTF for describing a direction, but the results suggest that this solution provides no advantage.

From the HRTF representatives it is expected to derive clever modeling of individualized HRTF, which will be the next step. Preliminary studies have given promising results \cite{9}. Beyond data reduction, HRTF clustering is also a powerful tool for investigating the spatial and individual dependence of HRTF, which could be analyzed in the light of auditory perception.

5. ACKNOWLEDGMENT

The authors are very grateful to P. Guillon for many fruitful discussion during the writing of this paper.

12 The 200 frequencies are used to elect the winner (see section 3.1.2) but only the 100th frequencies are used to compute the errors presented here since one wants to compare to the results presented in section 3.2.2

13 Except for Durant which is really improved using the two HRTFs on a position
Fig. 9: From left to right and up to down: (a) Average quantification error (Equ. 12) versus the SOM size for each criterion \((MSE, CB, \text{Avendano and Durant})\); (b) Average quantification error per position (Equ. 13) for each criterion for a SOM which contains 36 clusters \((6\times6)\); (c)(d)(e)(f) Average quantification error per frequency (Equ. 14) respectively for the \(MSE, CB, \text{Avendano and Durant}\) criterion, for a SOM which contains 36 clusters \((6\times6)\). (c)(d)(e)(f) : The blue boxes describe the lower and upper quartile. The median is depicted by a red line. The green curves show the 5th (lower curve depicted by crosses) and 95th (upper curve depicted by circles) centiles.
6. REFERENCES

