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Résumé : Exploratory activities seem to be crucial for our cognitive develop-
ment. According to psychologists, exploration is an intrinsically rewarding be-
haviour. The developmental robotics aims to design computational systems that
are endowed with such an intrinsic motivation mechanism. There are possible
links between developmental robotics and machine learning. Affective compu-
ting takes into account emotions in human machine interactions for intelligent
system design. The main difficulty to implement automatic detection of emotions
in speech is the prohibitive labelling cost of data. Active learning tries to select
the most informative examples to build a training set for a predictive model. In
this article, the adaptive curiosity framework is used in terms of active learning
terminology, and directly compared with existing algorithms on an emotion de-
tection problem.

1 Introduction and notation

Human beings develop in an autonomous way, carrying out exploratory activities.
This phenomenon is an intrinsically motivated behaviour. Psychologists (White, 1959)
have proposed theory which explains exploratory behaviouras a source of self rewar-
ding. Building a robot with such behaviour is a great challenge of developmental robo-
tics. The ambition of this field is to build a computational system that tries to capture
curious situations. Adaptive curiosity (Oudeyer & Kaplan,2004) is one possibility to
reach this objective, it pushes a robot towards situations in which it maximizes its lear-
ning progress. The robot first spends time in situations thatare easy to learn, then shifts
progressively its attention to more difficult situations, avoiding situations in which no-
thing can be learnt.

A bridge has been elaborated in (Bondu & Lemaire, 2007a) between this kind of
developmental robotic and classical machine learning to explore the data. On the one
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hand, adaptive curiosity allows a robot to explore its environment in an intelligent way,
and tries to deal with the exploration / exploitation dilemma. On the other hand, ac-
tive learning brings into play a predictive model that explores the space of unlabelled
examples, in order to find the most informative ones. This article uses this bridge.

The organization of this paper is as follow : in section 2 adaptive curiosity is presented
in a generic way, and initial choices of implementation are described. The next section
shows a possible implementation of adaptive curiosity for classification problems, a new
criterion of zones selection is proposed. Section 4 compares the new adaptive curiosity
strategy with two other active learning strategies, on an emotion detection problem.
Finally, possible improvements of this new adaptive curiosity are discussed.

Notations : M ∈ M is the predictive model that is trained with an algorithmL.
X ⊆ R

n represents all possible input examples of the model andx ∈ X is a particular
example.Y is the set of possible outputs of the model ;y ∈ Y refers to a class label
which is associated tox ∈ X.

The point of view of selective sampling is adopted (Castroet al., 2005) in this paper.
The model observes only one restricted part of the universeΦ ⊆ X which is materiali-
zed by training examples without label. The image of a“bag” containing examples for
which the model can ask for associated labels is usually usedto describe this approach.
The set of examples for which the labels are known (at one stepof the training algo-
rithm) is calledL and the set of examples for which the labels are unknown is calledU

with Φ = U ∪ L andU ∩ L = ∅.
The concept which is learnt can be seen as a function,f : X → Y, with f(x1) the

desired answer of the model for the examplex1. f̂ : X → Y is the answer of the model ;
an estimate of the concept. The elements ofL and the associated labels constitute a
training setT . The training examples are pairs of input vectors and desired labels such
as(x, f(x)).

2 Adaptive Curiosity - Initial choices

2.1 Generic Algorithm

Adaptive curiosity (Oudeyer & Kaplan, 2004) involves a double strategy. The first
strategy makes a recursive partitioning ofX, the input space of the model. The second
strategy selects zones to be fed with labelled examples (andto be split by recursive
partitioning). It is an active learning as long as the selection of a zone, to be fed with new
examples, defines the subset of examples which can be labelled (those which belong to
the zone). This adaptive curiosity is described below in a generic way.

The input spaceX is recursively partitioned in zones (some of them are included in
others). Each zone corresponds to a type of situations the robot must learn. A criterion is
used to select zones and split areas of input spaceX. Areas where the learning improves
are preferentially split. The main idea is to schedule situations to be learnt in order to
accelerate the robot’s training.

Each zone is associated with a sub-model which is trained with examples belonging
only to the zone. Sub-models are trained at the same time, on disjointed examples sets.
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For instance at the iterationQ on Figure 1, there are three zones associated with models
m1, m2, m3 which are trained on three disjointed examples sets. The partitioning of the
input space is progressively realized while new examples are labelled. Just before the
partitioning of a zone, the sub-model of the “parent” zone isduplicated in “children”
zones. At iterationQ + Q′ on Figure 1, the modelm2 is duplicated into two zones
((l21, u21) and(l22, u22)). Duplicated sub-models continue independently its learning
thanks to the examples that appear in their own zones. At iterationQ + Q′ + Q′′ on
Figure 1, zones(l21, u21) and(l22, u22) handle two different models (m2 andm4).

Algorithm (1) shows the general steps of adaptive curiosity. It is an iterative process
during which examples are selected and labelled by an expert. A first criterion chooses
a zone to be fed with examples (stage A). The following stage consists in drawing
an example from the selected zone (stage B). The expert givesthe associated label
(stage C) and the sub-model is trained with an additional example (stage D). A second
criterion determines if the current zone must be partitioned. In this case, one seeks
adequate separations in the “parent” zone to create “children” zones (stage i). Lastly,
the sub-model is duplicated into the “children” zones (stage ii).

Given :

• a learning algorithmL

• a setM = {m1, m2, ..., mn} of n predictive sub-models

• U = {u1, u2, ..., un}, n subsets of unlabelled examples

• L = {l1, l2, ..., ln}, n subsets of labelled examples

• T = {t1, t2, ..., tn} the training subsets corresponding to sub-models, withti =
{(x, f(x))} ∀x ∈ li

n← 1

Repeat
(A) Choose a sub-modelmi to be fed with examples, exploiting a zones
selection criterion
(B) Draw a new examplex∗ from ui

(C) Label the instancex∗, ti ← ti ∪ (x∗, f(x∗))
(D) Train the sub-modelmi thanks toL, U andti

If the split criterion is satisfiedthen
(i) Separateli into two sub-setslj and lk according to a partitioning
strategy
(ii) Duplicatemi into two sub-modelsmj andmk

(iii) n← n + 1
end If

until U = ∅

Algorithm 1: Adaptive Curiosity
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FIG. 1 – Illustration of adaptive curiosity
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2.2 Parameters - Initial Choices

The main purpose of this algorithm is to seek interesting zones in the input space
while the machine discovers data to learn. The algorithm chooses, as soon as possible,
the examples belonging to the zones where there is possible progress. Five questions
appear : (i) How to decide if a zone must be partitioned ? (ii) How to carry out the par-
titioning ? (iii) How many “children” zones ? (iv) How to choose zones to be fed with
labelled examples ? And (v) What kind of sub-models must be used ?

The following paragraphs describe the initial answers of P.Y. Oudeyer to these ques-
tions (Oudeyer & Kaplan, 2004).

Partitioning : A zone must be partitioned when the number of labelled examples
exceeds a certain threshold. Partitioned zones are those which were preferentially cho-
sen during previous iterations. These zones are interesting to be partitioned when more
populated. Associated sub-models have done important progress.

To cut a “parent” zone into two “children” zones, all dimensions of the input space
X are considered. For each dimension, all possible cut valuesare tested using the sub-
model to calculate the variance of example’s predictions onboth sides of the separa-
tion. During this stage, observable dataΦ is used. This criterion1 consists in finding
a dimension to cut and a cut value minimizing the variance. This criterion elaborates
preferentially pure zones to facilitate the learning of associated sub-models. Another
constraint is added by the authors, the cut has to separate labelled examples into two
subsets whose cardinalities are about balanced.

Zones selection :At every iteration, the sub-model that most improves results is
considered as having the strongest potential of improvement. Consequently, adaptive
curiosity needs an estimation of sub-model’s progress. Firstly, performances of sub-
models are measured on labelled data. The choice of a measureof performance is
required. Secondly, sub-models’ performances are evaluated on a temporal window.
The sub-model that realizes the most important progress is chosen to be fed with new
examples that are uniformly drawn.

3 Adaptive Curiosity for Classification

3.1 Introduction

The initial criterion of zones selection is difficult to implement for classification pro-
blems (Bondu & Lemaire, 2007a). Indeed, this criterion requires a measure of perfor-
mance which variations are examined on a temporal window to estimate robot’s pro-
gresses. Adaptive curiosity tries to deal with the dilemma exploration / exploitation
drawing new examples from zones where progress is possible.To consider the explo-
ration / exploitation dilemma by an efficient way, a new criterion of zones selection is

1This recursive partitioning uses a discretization method.For a state of the art on discretization methods,
interested readers can refer to (Boullé, 2006).
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proposed in this section. The new criterion is composed by two terms which respecti-
vely correspond to the exploitation and the exploration. A compromise between both
terms is provided by the new criterion.

Others implementation elements are exposed in section 6 such parameters of the par-
titioning strategy (see 6.3), or as the experimental protocol (see 6.5).

3.2 Exploitation : Mixture rate

Among existing splitting criteria (Breiman, 1996), we use the entropy as a mixture
rate. The functionMixRate(l) (equation 1) uses labels of examplesl ⊆ L, which
belong to the zone, to calculate the entropy over classes.

Part “A” of equation 1 corresponds to the entropy of classes that appear in a zone. Pro-
babilities of classesP (yi) are empirically estimated by a counting of examples which
are labelled with the considered class.

The entropy belongs to the interval[0, log |Y|] with |Y| the number of classes. Part
“B” of equation 1 normalizes mixture rate in the interval[0, 1].

MixRate(l) = −
∑

yi∈Y

P (yi) log P (yi)

︸ ︷︷ ︸
A

×
1

log |Y|︸ ︷︷ ︸
B

(1)

with P (yi) =
|x ∈ l, f(x) = yi|

|l|

Mixture rate is the “exploitation” term of the proposed zones selection criterion. By
choosing zones that have the strongest entropy, the hidden pattern is locally clarified
thanks to new labelled examples that are drawn in these zones. The model (see 6.2)
becomes very precise, on some area of the space. Figure 2 shows an experiment that
is realized on a toy example (see 6.1), using only entropy to select interesting zones.
Selected examples are grouped around the boundary, but there is a large part of the
space that is not explored.

3.3 Exploration : Relative density

Relative density is the proportion of labelled examples among available examples in
the considered zone. Equation 2 expresses relative density, with φ ⊆ Φ the subset of
observable examples that belong to a zone. As mixture rate, relative density varies in
the interval[0, 1].

RelativeDensity(l, φ) =
|l|

|φ|
(2)

Relative density is the “exploration” term of the criterion. The homogeneity of drawn
examples over the input space is ensured by choosing zones that have the lowest relative
density. This strategy is different from a random sampling because homogeneity of
drawn examples is forced. Figure 3 shows an experiment that is realized on the toy
example, using relative density to select interesting zones. Input space partitioning and
examples drawing are homogeneous.
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FIG. 2 – Selected examples using Mixture Rate only inX, with “◦” points of first class,
and “•” points of second class
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FIG. 3 – Selected examples using Relative Density only inX, with “◦” points of first
class, and “•” points of second class



CAp 2008

3.4 Exploitation vs. Exploration Compromise

The criterion evaluates the interest of zones, taking into account both terms ; mix-
ture rate and relative density. Equation 3 shows how each term is used. The parameter
α ∈ [0, 1] corresponds to a compromise between exploitation of already known mixture
zones and exploration of new zones.

Interest(l, φ, α) = (1 − α)MixRate(l) (3)

+α (1 −RelativeDensity(l, φ))

The notion of progress is included in the criterion : the relative density (that increases
at the same time new examples are labelled) forces the algorithm to leave zones in
which mixture rate does not increase quickly. If there is nothing else to discover in a
zone, the criterion naturally avoids it. In some cases, the criterion prefers none mixed
zones which are insufficiently explored. This criterion does not need a temporal window
to evaluate the progress of sub-models (see section 2.2). Soits implementation is easier
than initial adaptive curiosity approach. Figure 4 shows anexperiment that is realized on
the toy example, using the criterion withα = 1

2 . Input space partitioning and examples
drawing are organized around the boundary considering every region of space.
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FIG. 4 – Selected examples withα = 0.5 in X, with “◦” points of first class, and “•”
points of second class

Figure 5 shows performances (see 6.4) of the proposed strategy for various values of
α. Whenα = 0 only mixture rate is considered by the criterion. In this case, the ob-
served performances are significantly lower than the “stochastic” strategy considering
less than 100 examples. This phenomenon can be intuitively interpreted by a strong
exploitation of detected mixture zones, to the detriment ofthe remaining space. When
α = 1 only relative density is considered. In this case, adaptivecuriosity gives lower
performances than the “stochastic” strategy considering less than 70 examples. The best
performances are observed forα = 0.25. In this case, the maximum AUC is reached
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very early (with 60 labelled examples). Observed performances are superior to stochas-
tic strategy for all considered number of learnt examples. On this toy example, this
value obviously offers a good compromise between exploration and the exploitation.
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FIG. 5 – AUC vs. number of examples

These results show that adaptive curiosity can be beneficially used in active learning
framework, with the proviso of using an adapted zones selection strategy. Moreover,
the new strategy of zones selection is only based on data typology. Sub-models are only
used to carry out the partitioning and not to choose interesting zones.

4 Application to emotion detection

4.1 Introduction

Owing to recent techniques of speech processing, many automatic phone call centers
appear. These vocal servers are used by customers to carry out various tasks conversing
with a machine. Companies aim to improve their customer’s satisfaction by redirecting
them towards a human operator, in the event of difficulty. Theshunting of unsatisfied
users is carried out detecting the negative emotions in their dialogues with the machine,
under the assumption that a problem of dialogue generates a particular emotional state
in the subject.

The detection of expressed emotions in speech is generally considered as a supervised
learning problem. The detection of emotions is limited to a binary classification since
taking into account more classes raises the problem of the objectivity of labelling task
(Liscombeet al., 2005). In this application, the acquisition and the labelling of data are
costly. Active learning can reduce this cost by labelling only the examples considered
to be informative for the predictive model.
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4.2 Characterization of data

This study is based on a previous work (Poulain, 2006) which characterizes vocal
exchanges, in optimal way, for the classification of expressed emotions in speech. The
objective is to control the dialogue between users and a vocal server. More precisely,
this study deals with relevance of variables describing data, according to the detection
of emotions.

The used data results from an experiment involving 32 users who test a stock ex-
change service implemented on a vocal server. According to the users point of view,
the test consists in managing a virtual portfolio of stock options, the goal is to realize
the strongest profit. The obtained vocal traces constitute the corpus of this study : 5496
“turns of speech” exchanged with the machine. Turns of speech are characterized by
200 acoustic variables, describing variations of the soundintensity, variations of voice
height, frequency of elocution... Data is also characterized by 8 dialogical variables
describing the rank of a turn of speech in a dialogue, the duration of the dialogue...
Each turn of speech is manually labelled as containing positive (or neutral) or negative
emotions.

The subset of the most informative variables with respect tothe detection of expres-
sed emotions in speech is given thanks to a naive Bayesian selector (Boullé, 2006). At
the beginning of the selection of the most informative variables, the set of attributes is
empty. At each iteration, the attribute that most improves the quality of the predictive
model is added. The algorithm stops when the addition of attributes does not improve
any more the quality of the model. Finally, 20 variables wereselected to characterize
vocal exchanges. In this article, used data comes from the same corpus from this pre-
vious study (Poulain, 2006). So, every turn of speech is characterized by 20 variables
(see 6.7).

4.3 The choice of the model

Parameters that must be adjusted to use a model may representa bias for measuring
the contribution of a learning strategy. A Parzen window2, with a Gaussian kernel (Par-
zen, 1962), is used in experiments below since this predictive model uses a single pa-
rameter (σ the variance of the Gaussian kernel) and is able to work with few examples.
This model has been chosen to compare obtained results usingadaptive curiosity and
previous results (Bonduet al., 2007) using classical active learning strategy. The “out-
put” of this model is an estimate of the probability to observe the labelyj conditionally
to the instanceu :

P̂ (yj |u) =

∑N

n=1 1{f(ln)=yj} K(u, ln)
∑N

n=1 K(u, ln)
(4)

with
ln,∈ Lx et u ∈ Ux ∪ Lx

2Kernel methods and closer neighbour methods are usually employed in classification of expressed emo-
tions in speech (Guideet al., 2003).
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and

K(u, ln) = e
||u−ln||2

2σ2

The optimal value (σ2=0.24)3 of the kernel parameter was found thanks to a cross-
validation using the whole of available training data (Chappelle, 2005). Thereafter, this
value is used to fix the Parzen window parameter. The single parameter of the Parzen
window is now fixed, the training stage is reduced to count instances “inside” the Gaus-
sian kernel. In such conditions, strategies of examples selection are comparable without
influence of the training of the model.

The model must be able to assign a labelf̂(u) to an input datau, so a decision
threshold notedT h(Lx) is calculated at each iteration. This threshold maximizes the
AUC of the model on the available training set. The predictedlabel is :

f̂(un) = 1 if {P̂ (y1|un) > T h(Lx)}

f̂(un) = 0 else

4.4 Used Active Learning strategies

The objective of this section is to compare adaptive curiosity with active learning
strategies already described in the literature. Two alternating strategies are considered
in this paper : uncertainty sampling and sampling by risk reduction. Interested readers
can refer to (Bondu & Lemaire, 2007b) for an exhaustive stateof the art on active
learning strategies.

Uncertainty sampling (Thrun & Möller, 1992) is based on the confidence that the
model has on its predictions. The used model must be able to produce an output and to
estimate the relevance of its answers. In the case of the Parzen window, the confidence
of a prediction is based on the estimated probability to observe the predicted class.
More precisely, a prediction is considered as uncertain when the probability to observe
the predicted class is weak. This strategy selects unlabelled examples that maximize the
uncertainty of the model. The uncertainty can be expressed as follows :

Incertain(x) =
1

argmaxyj∈YP̂ (yj |x)
x ∈ X

.
Sampling by risk reduction aims to reduce the generalization error,E(M), of the

model (Roy & McCallum, 2001). This strategy chooses examples that minimize this
generalization error. In this paper, the generalization error (E(M)) is estimated using
the empirical risk (Zhuet al., 2003) :

Ê(M) = R(M) =

|L|∑

i=1

∑

yj∈Y

1{f(xi) 6=yj} P (yj |xi)P (xi)

3Another simple way to choose the width of the kernel is to use only the number of input variable as
Scholkopf (Schölkopfet al., 1999) and evaluated in (Lemaireet al., 2008)
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Wheref(xi) is the predicted class of the instancexi, 1 the indicating function equal to
1 if f(xi) 6= yi and equal to0 else, andP (yi|xi) is the probability to observe the class
yi for the examplexi ∈ L. ThereforeR(M) is the sum of the probabilities that the
model makes a bad decision on the training set (L). Using a uniform prior to estimate
P (xi), one can write :

R̂(M) =
1

|L|

|L|∑

i=1

∑

yj∈Y

1{f(xi) 6=yj} P̂ (yj |xi)

In order to select examples, the model is re-trained severaltimes considering one more
“potential” example. Each instancex ∈ U and each labelyj ∈ Y can be associated to
constitute the additional example. The expected risk of an examplex ∈ U that is added
to the training set is then :

R̂(M+x) =
∑

yj∈Y

P̂ (yj |x)R̂(M+(x,yj)) with x ∈ U

4.5 Results

Several experiments were realised. Each experiment has been done five times4 in or-
der to obtain average performances provided with a variance. The natches on the curves
of the figure 6 correspond to 4 times the variance of the results (±2σ). At the begin-
ning of each experiment, the training set contains only two randomly chosen examples
(one positive and one negative). At each iteration, ten examples are selected to be la-
belled and added to the training set. The considered classification problem is unbalan-
ced : there is92% of positive (or neutral) emotions and8% of “negative” emotions.
To observe correctly the classification profits when examples are labelled, the model is
evaluated using the AUC (see 6.4) on the test examples set5.

For this real world problem no information to adjust parameters of adaptive curiosity
is available, so we useα = 0.5 as a default value. Because of the important size ofΦ
(1200 examples), the partitioning step is very long to be computed. So, the partitioning
threshold increases to100 examples in a zone. In such conditions, adaptive curiosity is
the strategy that maximizes the quality of the predictive model. Adaptive curiosity is
significantly better than the other strategies for a number of labelled examples in the
range [80 :1200]. Moreover the observed variance of the results is very low.

The two other active strategies are more difficult to differentiate. Between 100 and
700 labelled examples the uncertainty sampling wins, and beyond 700 labelled examples
the sampling by risk reduction is better than the uncertainty sampling. The reason of the
bad behaviour of the risk reduction strategy could be due to the fact that ten examples
are added at every iteration (Lemaireet al., 2007).

On this real problem, active strategies allow to obtain the optimal performance using
fewer examples than the stochastic strategy. Adaptive curiosity reaches the optimal
AUC (0.84) with only 500 examples. These results show adaptive curiosity is a compe-
titive active learning strategy for detection of emotions in speech.

4Experiments have been repeated only five times due to high complexity of risk reduction strategy.
5The test set includes 1613 examples and the training set 3783examples.
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FIG. 6 – Focus of the results on the test set using [0 :1200] training examples

5 Conclusion

This paper shows adaptive curiosity can be used as an active learning strategy in ma-
chine leaning framework. More precisely, adaptive curiosity seems to be very efficient
for detection of emotions in speech.

Adaptive curiosity is a strategy that is not dependent on thepredictive model. Adap-
tive curiosity can be implemented exploiting any models able to predict the probability
to observe each class on examples. In this article, two different predictive models are
used : a logistic regression in part 3, a Parzen window in part4. This strategy can be
applied on others real problems, using others predictive models.

We have defined a new zones’ selection criterion that gives good results on the consi-
dered toy example and on emotions detection. However, this criterion balances exploita-
tion and exploration using a parameter. Future works will bedone to make the algorithm
autonomous to adjust this parameter (Osugiet al., 2005).

Adaptive curiosity was initially developed to deal with high dimensionality input
spaces, where large parts are not learnable or quasi-random. Future works will be reali-
zed to estimate the interest of our new criterion in such conditions. The influence of the
complexity of the problem to be learnt (that is to say, the number of examples necessary
to solve it) will be also studied.

The partitioning step of adaptive curiosity has aO(n3) complexity and is prohibitive
to treat high dimensionality datasets. Moreover, the cut criterion involves two parame-
ters : the maximum number of labelled examples belonging to azone, and the maximum
balance rate of labelled examples subsets of a zone split. The use of non parametric
discretization method (Boullé, 2006) could be an efficient way to decide “when” and
“where” a zone has to be split. This aspect will be consideredin future works.
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6 Annexe - Details for reproduction
6.1 Toy example

The toy example is a binary classification problem in a two dimensional spaceX =
X × Y . We consider two classes that are separated by the boundaryY = sin(X3),
on intervalsX ∈ [−2, 2] andY ∈ [−2, 2]. 2000 training examples were used (Φ) and
30000 test examples both uniformly generated over the spaceX.

6.2 Used model for the toy example
A logistic regression implemented by a neural network is used (Sarle, 1994). The

outputs of this model are normalized by a soft max function inthe interval[0, 1]. Out-
puts correspond to probabilities of observing classes, conditionally to the instance that
is placed as input of the model. Neural network’s training isstopped when the training
error does not decrease more than10−8, and the training step is fixed to10−2. Logistic
regression is used as a global model that is trained independently of the input space
partitioning, using examples that are selected by sub-models. Sub-models play only a
role in the selection of interesting zones and in the selection of instances to be labelled.
A global model is trained using these examples. The global model allows making a co-
herent comparison between adaptive curiosity and others strategies that handle a single
model. Performances of the global model report only the quality of selected examples.

6.3 Partitioning
Zones containing at least 30 labelled examples are split. A cut separates labelled

examples into two±25% balanced subsets (according to the criterion of section 2.2).
These arbitrary choices are preserved for all experiments in this paper.

6.4 Measure of performances
ROC curves plot the rate of good predictions against the rateof bad predictions on

a two dimensional space. These curves are built sorting instances of test set according
to the output of the model. ROC curves are usually built considering a single class.



CAp 2008

Consequently,|Y| ROC curves are considered. AUC is computed for each ROC curve,
and the global performance of the model is estimated by the mathematical expected
value of AUC, over all classes :AUCglobal =

∑|Y|
i=1 P (yi).AUC(yi)

6.5 Protocol
Beforehand, data is normalized using mean and variance. At the beginning of experi-

ments, the training set contains only two labelled exampleswhich are randomly chosen
among available data. At every iteration, a single example is drawn in the current zone
to be labelled and added to the training set. Active learningstops when 250 examples
are labelled.

6.6 Stochastic strategy
The “stochastic” strategy handles a global model and uniformly selects examples

according to their probability distribution. This strategy plays a role of reference and is
used to measure the contribution of adaptive curiosity.

6.7 data of emotion detection
This part enumerates the 20 variables which characterize vocal exchanges in emotion

detection problem.

1. System shut down (the user closes the dialog)

2. Number of words of the current turn of speech

3. The user comments the dialog

4. Number of errors on the current task

5. Total number of errors on nested tasks

6. Increase of the signal intensity

7. Decrease of the signal intensity

8. Maximum coefficient of the first harmonic of the signal (Fourier transform)

9. Average of the distribution of voice’s timbre variation

10. Maximum value of standard variance of voice’s timbre variation

11. Standard variance of voice’s timbre variation

12. Average of the distribution of power of high-frequency /low frequency ratio.

13. Standard variance of signal energy

14. Sum of standard variance of signal energy

15. Maximum value of standard variance of signal energy

16. Derivative of signal energy

17. Jitter of signal energy

18. Complete reformulation of the previous turn of speech

19. Complete repetition of the previous turn of speech

20. Partial repetition of the previous turn of speech


