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Abstract. In itself, the continuous exponential increase of the data-
warehouses size does not necessarily lead to a richer and finer-grained
information since the processing capabilities do not increase at the same
rate. Current state-of-the-art technologies require the user to strike a del-
icate balance between the processing cost and the information quality.
We describe an industrial approach which leverages recent advances in
treatment automatization and relevant data/instance selection and in-
dexing so as to dramatically improve our capability to turn huge volumes
of raw data into useful information.

1 Introduction

The rapid and robust detection of the most predictive variables is a key factor in
a marketing application. An industrial customer targeting platform developed
at Orange Labs, capable of building predictive models for datasets having a
very large number of input variables (ten of thousands) and instances (tens of
thousands), is currently in use by Orange marketing. A key requirement is the
complete automation of the whole process. The system extracts a large number
of variables from a relational database, selects a subset of informative variables
and instances, and efficiently builds in a few hours an accurate classifier. When
the models are deployed, the platform exploits sophisticated indexing structures
and parallelization in order to compute the scores of millions of customers, using
the best representation.

The challenge KDD Cup 2009 [1] was to beat the in-house system developed
by Orange Labs on three standard marketing campaigns : the propensity of cus-
tomers to switch provider (churn), buy new products or services (appetency),
or buy upgrades or add-ons proposed to them to make the sale more profitable
(up-selling). The results of KDD Cup show that automatic modeling on thou-
sands of variables leads within few hours to results close to those obtained by
top level researchers in a month. Knowing that a datamart containing tens of
thousands of variables describing millions of instances is practically unfeasible,
this interesting result raises two questions for industrial use:

1. How to build hundreds of models on tens of thousands of variables ?
2. How to deploy hundreds of models on millions of instances ?



These questions were at the origin of the Customer Analysis Platform.
This paper describes this industrial customer targeting platform developed

at Orange Labs. The paper is organized as follow : Section 2 describes the pro-
cess of the targeting of marketing campaign, Section 3 presents the processing
architecture and the modeling step, Section 4 presents the Deployment Cycle
and Section 5 several experiments.

2 The targeting of marketing campaign

Customer Relationship Management (CRM) is a key element of modern market-
ing strategies. The most practical way to build useful knowledge on customers
in a CRM system is to produce scores to detect churn, propensity to subscribe
to a new service... Hundreds of scores are produced by Orange marketing each
month. These scores are then injected in the CRM tools to target incoming and
outcoming marketing campaigns. The scoring process is an industrial process
containing a lot of complex tasks :

1. Each month a customer datamart, called datafolder, is fed from the dataware-
house. As the datamart contains different domains of data such as customer,
billing, uses, contacts..., it is ready to be used when the last domain of data
is produced. Billing data are the last produced, at the middle of the current
month. Few days after, all the scores have to be produced to feed CRM tools.

2. For each marketing campaign, a filter is applied on the datamart. The filter
defines the population concerned by the marketing campaign. For example,
for a churn purpose the filter selects the customers you want to retain.

3. Then the current model used to target customers of the marketing campaign
is tested. To test the current model, the scores of the previous month are
compared to the present. If the accuracy indicator such as AUC is not stable
in comparison to previous values, a new model is learnt with recent data.
The lifetime of a model is usually in the order of one year.

4. The model is deployed to produce scores of the current marketing campaign.

This description of the targeting process shows that the bottleneck is not the
modeling task but the deployment task : most of the models are re-used each
month, and the time constraint is strong on deployment since hundreds of scores
have to be produced for millions of customers in only few days.

3 Platform Architecture

3.1 Introduction

This section gives an overview of the Orange Customer Analysis Platform. The
block diagram of the Orange Customer Analysis Platform is presented Figure
1. The next sections of this paper enter more in depth to detail several parts of
this platform.



The first step to obtain scores on customers is to build a datafolder: the input
data from information system are structured, and stored in a simple relational
database (see Section 3.2). Then the platform includes 2 mains cycle:

1. The modeling cycle which includes two different steps:

– The modeling step: using the extraction language, with specification ‘A’,
a modeling database is extracted from the datafolder (see section 3.3).
This database contains P1 instances and N1 explanatory variables. P1 is
a subset of the customers to be scored. Using this database the modeling
step is performed; this step includes two main functions: the variable
selection (see Section 3.4) and the construction of a classifier (see Section
3.5). At the end of the modeling step one has a classifier which uses a
subset of the N1 explanatory variables: N2 (N2 � N1). Only this N2
variables will be used in the extraction language with specification ‘B’
and ‘C’.

– The indexing step: using extraction language, with specification ‘B’, a
filtered database is extracted from the datafolder. This database contains
P2 instances and N2 explanatory variables where P2 represents all the
customers to be scored at the end of the complete process (P2 � P1).
Then the instance selection step is performed to extract a paragon table
(see Section 4.2) which contains P3 real customers (P3 � P2), each
described by N2 explanatory variables. The application of a k nearest
neighbor (knn) and Locality Sensitive Hashing (LSH) algorithms on this
table allows the creation of an indexation table (see Section 4.3). This
indexation table links any customer (P2) to a customer of the paragon
table (P3).

The complete output of the modeling cycle is therefore: a classifier, an in-
dexation table, and the extraction specification ‘C’ corresponding to the N2
explanatory variables, and to the P3 paragons.

2. The deployment cycle: knowing the output of the modeling cycle the extrac-
tion query with specification ‘C’ can be written in the extraction language
and applied on a new data folder. This produces the paragon table (PT table
in the Figure 1) and the indentifier table (ID table in the Figure 1). Then the
classifier is applied on the paragon table to obtain the scores of the paragons.
Finally knowing the scores of the paragons and the indexation table a joint
is realized and therefore all the customers are scored (see Section 4.1).
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Fig. 1. The Orange Customer Analysis Platform. Blue arrows and background : mod-
eling cycle, Green arrows and background: deployment cycle.



3.2 The data folder

Fig. 2. Principle : data are normalized and hashed in a star schema database. Using ex-
traction languages, learning algorithms drive data preparation, modeling and instance
selection. A server executes in parallel most of the process. In this illustrative example,
a flat table is extracted from the input datafolder

Unlike the current practice of data mining architecture, the explanatory vari-
ables are not a priori designed and computed in a datamart. In our platform
architecture, the input data from information system are structured, and stored
in a simple relational database : the data folder (Figure 2). The explanatory vari-
ables are built and selected automatically for each specific marketing project.
In order to be computed in parallel and in memory, the datafolder is hashed in
small datafolders of size 1 Go (Figure 2).

The data folder model provides a unique view of the available input data
sources, normalized according a star schema:

– The primary table is related to the marketing domain. For customer data
analysis, this table contains all the fields directly connected to the customer,
such as his name or address.

– The secondary tables have a 1-N relationship with the primary table. Each
instance of the primary table may be related to a variable number of in-
stances of a secondary table. For telecommunication data for example, the
secondary tables contains the list of services, of usages of theses services, the
call details.

This type of data modeling has a large expressiveness, suitable for many data
mining projects. It offers an efficient trade-of between single-table data mining



and full multi-relational data mining. The star schema allows to efficiently build
many constructed variables, when the join key belongs to the primary table,
whereas in a traditional data-warehouse, the construction of one single variable
may involve multiple table joins. Finally, this star schema modeling allows the
design of formatted data extraction languages, with the purpose of automation
of the data mining process.

3.3 Data Extraction

The data extraction functionality of the platform is parametrized using three
languages:

– a selection language to filter the instances,
– a construction language to build a flat instance x variables representation

from the data folder,
– a preparation language to specify the recoding of the explanatory variables.

These languages are both simple enough to be automatically exploited by the
process of variable selection and expressive enough to build a large variety of ex-
planatory variables. Each language expression deals with at most two tables: the
primary table plus eventually one secondary table. The join key always belongs
to the primary table, and the selection and construction operands exploit the
fields of any table, primary or secondary. For example, to build the number of
usages of each service per weekday for all customers, one single language expres-
sion needs to be specified, with the use of the “Count” operator on the secondary
table “Usage” with two operands “WeekDay(Date)” and “Label(ServiceId)”. It is
then possible to specify up to thousands of variables to construct, using one
single expression of the construction language.

3.4 Variable Selection

The platform architecture allows to easily build flat data tables with up to tens
of thousands of constructed variables. In order to select the best representation,
that is the best subset of informative variables, a powerful variable selection
method [2, 3] is required, both robust and efficient. In the context of decision
trees [4–6], supervised discretization methods are employed at each node of the
tree in order to select the next split variable, using filter criteria based on sta-
tistical tests [7], error rate or entropy [8]. When the number of intervals of the
discretization is a free parameter, the trade-off between information and ro-
bustness is an issue. In the MODL (Minimum Optimized Description Length)
approach, supervised discretization [9] (or value grouping [10]) is treated as a
nonparametric model of conditional probability of the output variable given an
input variable. The discretization is turned into a model selection problem and
solved in a Bayesian way. The best discretization and value groupings are op-
timized using the bottom-up greedy heuristic described in [9]. One advantage
of this filter approach is that non informative variables are discretized in one



single interval and can thus be reliably discarded. The algorithmic complexity of
O(n log n) of this heuristic and the excellent reliability of this method allow to
preprocess a very large number of variables, around 50000 in our experiments,
and to select a small subset of informative variables, typically 10% of the input
variables in the marketing domain.

3.5 Modeling

The naive Bayes classification approach [11–13] is based on the assumption that
the variables are independent within each output label, and simply relies on the
estimation of univariate conditional probabilities. In the Orange Customer Anal-
ysis Platform, this approach benefits from the high quality MODL preprocessing.
The naive independence assumption can harm the performance when violated.
In order to better deal with highly correlated variables, the selective naive Bayes
approach [14] exploits a wrapper approach to select the subset of variables by
optimizing the classification accuracy. In this seminal work, the search algorithm
has a quadratic time complexity w.r.t the number of the variables, and the se-
lection process which is prone to overfitting. In [15], the search algorithm is able
to process large numbers of variables with super-linear time complexity, and
the over-fitting problem is tackled using a Bayesian regularization approach. Fi-
nally, a model averaging approach is applied in order to achieve better accuracy
and reliability. Using the naive Bayes assumption, weighting many models of
variable selection reduces to one single naive Bayes classifier with weighted vari-
ables, allowing an efficient deployment of the ensemble of selective naive Bayes
classifiers.

To summarize, in the platform, a selective naïve Bayes classifier [15] lever-
ages the MODL preprocessing, variable selection regularization and model av-
eraging in order to build effective scores fully automatically. This method is
efficiently implemented into the Khiops scoring tool (available as shareware, see
www.khiops.com).

4 Efficient Deployment

4.1 Principle

To produce scores, a model has to be applied for all instances on all explanatory
variables. To speed up this process, a table of paragons containing representative
individuals is extracted. The paragons are connected by an index to all the
population. The scores of all instances are obtained by a simple join between the
table of the paragons and the index. This method of deployment is particularly
effective when the model is deployed several times. For example for monthly
marketing campaigns, only the reduced table of the paragons is built each month
to produce the scores of all instances. This approach makes it possible to increase
dramatically the number of scores which can be produced on the same technical
architecture.



4.2 Paragons Selection

The table of the paragons is crucial for the final performance of the system.
A poorly representative paragon table leads to ineffective scores, on the other
hand, a too large paragon table increases computational cost.

The table of paragons is drawn from the datafolder to be representative of
the variables relevant for the model. To produce and maintain online a sample of
size n, Reservoir Sampling algorithm [16]) can be used. An inclusion probability
of n/(t + 1) is given for each tuple arrived at time t. An interesting property
of this algorithm is that, when t tuples have been observed, all the t tuple have
the same probability to be included in the reservoir: n/t. Biased versions of this
algorithm may take into account recent data ([17]) or weighted data ([18–20]).

As the frequencies of discretized explanatory variables are known from the
variable selection stage, a biased version of Reservoir Sampling can be used to
draw the paragons. To control and speed up the convergence time, we use a
deterministic version of Biaised Reservoir Sampling. A reservoir is filled until it
reaches the desired size P without removing any instance :

1. The reservoir is initialized with the first K instances.
2. At each iteration an instance is chosen to optimize Khi2 criterion between

theoretical frequencies and frequencies observed in a windows of size M , with
M � P .

3. Then the search window is shifted of L instances in order to fill the reservoir
of size P in one pass on the table of size N : L = (N −M)/P .

The size of the search windows allows to tune the trade-off between compu-
tational time cost and accuracy of the algorithm : the more M is, the more the
accuracy is and the less the computational time cost is.

4.3 Data Indexing

The problem to be solved is simple to state: being given an individual, to find his
nearest neighbor in the table of paragons. The L1 norm between the explanatory
variables is used to evaluate the distance between instances. This task has to be
executed for all the instances of the datafolder. The search of nearest neighbors is
an expensive operation. Its naive implementation implies an exhaustive research
among the paragons, therefore a complexity in O(nmp), n being the number of
instances, m the number of explanatory variables and p the number of paragons.
In order to accelerate the research of nearest neighbors, a compromise between
speed and accuracy can be done : to find a paragon close to the nearest using
Locality Sensitive Hashing [21] allows. This algorithm is based on a technique of
hashing to select good candidates among the paragons to be close to the nearest.
Then an exhaustive search is done on good candidates to find the paragon. Our
implementation of this technique makes it possible to bring back the complexity
of the search close to O(nm

√
p). It reduces the computational cost of a factor

300 per 100000 paragons, and leaves to the user the control of the compromise
speed / performance.



5 Experiments

We compared the scores produced with our platform (including the Khiops scor-
ing tool) and with the current model for several Orange marketing campaigns.

The current model is built with KXEN [22] on a datamart containing about
700 explanatory variables. To supply the platform, we have collected data on
about one million of customers between January and June 2005. The information
comes from decisional applications of Orange Company. The first four months
have been used to build the customer profiles, the last two to compute the target
variable. 20% of the customers are kept for the evaluation of the models.

The performance of a model is measured with the cumulative gain curve
(Figure 3). It is a graphical representation of the advantage of using a predictive
model to choose which customers to contact. The x-axis gives the proportion of
the population with the best probability to correspond to the target, according
to the model. The y-axis gives the percentage of the targeted population reached.
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Fig. 3. Lift curve of predictive models for churner detection

The goal of the campaign presented below is to prevent a customer to switch
ADSL provider.

We plotted the cumulative gain curves for several predictive models on Figure
3. The diagonal represents the performance of a random model. If we target
20% of the population with this random model, we are able to reach 20% of the
customers who will churn in next two months. With the current model, when 20%
of the population is targeted, 45% of the fragile customers are reached. Compared
with a random targeting we have a gain (G1) of 2.25 (G1 = 45

20 = 2.25)



The automation of the search of representation has led us to select a model
based on 191 explanatory variables chosen among a set of 50000 variables.

The model deployment is then achieved on all the instances with a vari-
able number of paragons: 500, 5000, 15000 and also directly on the population.
In the case of a direct deployment on all the instances, if we contact 20% of
the population based on this new modelling, 65% of the fragile customers are
targeted. Compared with the current technique, we have a gain (G2) of 1.4
(G2 = 65

45 = 1.44). This improvement remains true for the entire cumulative gain
curve.

An in-depth analysis of the most relevant variables kept by the targeting
model built with the platform can help us draw the portrait of a typical churner.
His engagement ends in next 4 months, he lives in a dense area, he is young (be-
tween 14 and 27 years old) and his volume of traffic has changed a lot (decrease
or strong increase) in last 3 months. 5 of the 10 most important variables are
not present in the initial datamart, used for the current model. They have been
constructed directly from the data folder and specifically for the churn cam-
paign. This is the strength of our methodology: with our platform we are able
to explore a large number of new variables on demand, according to a specific
campaign and select the most relevant of them.

Let’s turn now to score deployment with paragons. When such a technique is
applied, there is a loss of reliability which depends on the number of paragons.
The targeting comes close to the best when the number of paragons increases
but it is also very costly. For example, when 5000 paragons are used to represent
1000000 customers, at a level of 20% of the targeted population, 60% of the
fragile customers are reached (+40% of gain compared with a random targeting
and +15% compared with the current technique). With 15 000 paragons, the
performances are similar to those of the direct deployment. To evaluate the
quality of the algorithm of paragon selection, we have compared the performances
obtained when the paragons are randomly selected and when the paragons are
using a biased reservoir sampling on the theoretical distribution of explanatory
variables. With 500 paragons, at the level of 20% of population, 50% of the target
is reached for the random selection and 55% with biased reservoir sampling
(Figure 3).

The whole process of extraction of a paragon table from one million customers
and a representation space of 50000 variables takes about 3 hours on a server
with 16 processors and 32 Go of RAM. One third of processing time is for the
selection of the representation and two thirds are for the search and indexation
of paragons. Once the paragons are available, the score production from the
paragon table takes less than one minute.

One processing hour is necessary in a direct deployment to generate a table
of one million instances with 191 explanatory variables and apply the predictive
model on this table. It is very efficient to use paragons for the deployment of a
recurrent score like fragility scores or ADSL recruiting. For an opportunist score
such as appetency to a specific offer, a direct deployment is better.



6 Conclusion

We have described a data-mining platform which allows to build predictive
models using two orders of magnitude more explanatory variables than the
current state-of-the-art, resulting in a dramatic improvement of performances.
The Orange Customer Analysis Platform relies on a novel architecture which
allows to leverage recent advances in treatment automatization and relevant
data/instances selection and indexing. The processing time associated with data
table flattening remains the main limitation to the exploration of an even larger
data space. The conception of an explanatory technique guiding the flatening
towards the most promising areas of such huge spaces is a direction for further
research.
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