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Abstract

Exploratory activities seems to be crucial for
our cognitive development. According to spy-
chologists, exploration is an intrinsically reward-
ing behaviour. That explains the autonomous and
active development of children. The developmen-
tal robotics aim to design computational systems
that are endowed with such an intrinsic motivation
mechanism. There are possible links between de-
velopmental robotics and classical machine learn-
ing. Active learning strategies aim to the most in-
formative examples and adaptive curiosity allows
a robot to explore its environement in an intelli-
gente way. In this article, the adaptive curios-
ity framework is reformulated in terms of active
learning terminology, and compared directly to
existing algorithms in this field. The main contri-
bution of this article is a new criterion evaluating
the potential interestingness of zones of the sen-
sorimotor space.

1. Introduction and notation

Human beings develop in an autonomous way, carrying
out exploratory acivities. This phenomenon is an intrin-
sically motivated behaviors. Psychologists (White, 1959)
have propose theory which explain exploratory behaviors
as a source of self rewarding. Building such a robot is
a great challenge of developmental robotics. The am-
bition of this field is to build a computational system
that try to capture curious situations. Adaptive curiosity
(Oudeyer and Kaplan, 2004) is one possility to aim this
objective. This approach push a robot towards situations
in which it maximizes its learning progress. The robot
first spends time in situations that are easy to learn, then
shifts progressively its attention to more difficult situa-
tions, avoiding situations in which nothing can be learnt.

This article does a bridge between developmental
robotic and classical machine learning. Active learning
strategies allow a predictive model to construct its train-
ing set in interaction with an expert. The learning starts
with few labelled examples. Then the model selects ex-
amples (with no label) which considers the most infor-
mative and asks their associated output to the expert. The
model learns faster thanks to active learning strategies,
reaching the best performances using less data. These

approaches minimize the labeling cost inducted by the
training of a model.

On the one hand, active learning brings into play a pre-
dictive model that explore the space of unlabelled exam-
ples, in order to find the most informative ones. On the
other hand, adaptive curiosity allow a robot to explore its
environment in an intelligente way, and tries to deal with
the dilemma exploration / exploitation. This paper pro-
poses to fit adaptive curiosity to supervised active learn-
ing. The organization of this paper is as follow : in sec-
tion 2., adaptive curiosity is presented in a generic way
and original implementation choices are described. The
next section shows a possible implementation of adaptive
curiosity for classification. The behavior of this strategy
is examined on a toy example. Considering the obtained
results, a new strategy of adaptive curiosity is defined
in section 4.. This new strategy is then compared with
two other active learning strategies. Finally, possible im-
provements of adaptive curiosity are discussed.

Notations : M ∈ M is the predictive model that is
trained with an algorithmL. X ⊆ R

n represents all pos-
sible input examples of the model andx ∈ X is a partic-
ular examples.Y is the set of possible outputs (answers)
of the model;y ∈ Y refers to a class label which is asso-
ciated tox ∈ X.

The point of view of selective sampling1 is adopted
(Castro et al., 2005) in this paper. The model observes
only one restricted part of the universeΦ ⊆ X which is
materialized by training examples with no label. The im-
age of a“bag” containing examples for which the model
can ask for associated labels is usually used to describe
this approach. The set of examples for which the labels
are known (at one step of the training algorithm) is called
L and the set of examples for which the labels are un-
known is calledU with Φ = U ∪ L andU ∩ L = ∅.

The concept which is learnt can be seen as a function,
f : X → Y, with f(x1) the desired answer of the model
for the examplex1 andf̂ : X → Y the obtained answer
of the model; an estimation of the concept. The elements
of L and the associated labels constitute a training set
T . The training examples are pairs of input vectors and
desired labels such that(x, f(x)).

1In practice, the choice of selective (Roy and McCallum, 2001) or
adaptive (Singh et al., 2006) sampling depends primarily onthe appli-
cability where the model is authorized, or not, “to generate” new exam-
ples.



2. Adaptive Curiosity

2.1 General remarks

Adaptive curiosity (Oudeyer and Kaplan, 2004) is the
ability for a robot to choose appropriate situations2 ac-
cording to its learning3. Indeed, the robot can be in a
trivial state (or on the contrary, in a too difficult state)
in which it can not learn anything. The objective of the
robot is to maximize its progress carrying out the good
actions in its environment.

Y. Nagai (Nagai et al., 2002) shows that a robot can
learn faster considering situations where the difficulty
progressively increases. The aim of adaptive curiosity
is to make the robot autonomous in the choice of learnt
situations. In the best case, the robot is interested by
more and more difficult situations, and leaves situations
for which there is nothing to learn.

The first intuition for robot’s progress assessment is to
compare successive performances. If the robot carries out
a task in a better way than previously, one considers it
makes progress. With such training rules, the robot can
adopt aberrant behaviors.

To illustrate that point, Y. Nagai (Nagai et al., 2002)
uses the example of a robot that learns to estimate its own
position after a move. The robot believes to make big
progress alternating a collision with an obstacle and im-
mobility. Indeed, "immobility" is the action that allows
the robot to predict its next position with the more im-
portant precision. Comparing this performance with the
previous state (the collision), the progress is maximum.

Adaptive curiosity compares similar situations (and
not successive situations) (Oudeyer and Kaplan, 2004) to
measure robot’s progress. Several sub-models which are
specialized in certain types of situations are trained at the
same time. The aim of adaptive curiosity is to make the
robot autonomous in the discovery of the environment.

2.2 Generic Algorithm

Adaptive curiosity (Oudeyer and Kaplan, 2004) involves
a double strategy. The first strategy makes a recursive
partitioning ofX, the input space of the model. The sec-
ond strategy selects zones to be fed with labelled exam-
ples (and to be split by recursive partitioning). It is an ac-
tive learning as far as the selection of a zone defines the
subset of examples which can be labelled (those which
belong to the zone). Adaptive curiosity is described be-
low in a generic way and illustrated by an algorithm.

The input spaceX is recursively partitioned in zones
(some of them are included in others). Each zone corre-
sponds to a type of situations the robot must learn. Adap-
tive curiosity uses a criterion to select zones and pref-
erentially splits area of input spaceX in which learning
improves. The main idea is to schedule learnt situations
in order to accelerate the robot’s training.

2A situation is defined as the state of the whole of sensors.
3The robot is learning to carry out a task in its environment.

Each zone is associated with a sub-model which is
trained with examples belonging to the zone only. Sub-
models are trained at the same time on disjointed exam-
ples sets. The partitioning of the input space is progres-
sively realized, at the same time new examples are la-
belled. Just before the partitioning of a zone, the sub-
model of the "parent" zone is duplicated in "children"
zones. Duplicated sub-models continue independently
their learning thanks to the examples which appear in
their own zones.

Algorithm (1) shows the general steps of adaptive cu-
riosity. It is an iterative process during which examples
are selected and labelled by an expert. A first criterion
chooses a zone to be fed with examples (stage A). The
following stage consists in drawing an example in the se-
lected zone (stage B). The expert gives the associated la-
bel (stage C) and the sub-model is trained with an addi-
tional example (stage D). A second criterion determines
if the current zone must (or must not) be partitioned. In
this case, one seeks (in the "parent" zone) adequate sep-
arations to create "children" zones (stage i). Lastly, the
sub-model is duplicated into "children" zones (stage ii).

Given :

• a learning algorithmL

• a setM = {m1, m2, ...,mn} of n predictive sub-models

• U = {u1, u2, ..., un}, n subsets of unlabelled examples

• L = {l1, l2, ..., ln}, n subsets of labelled examples

• T = {t1, t2, ..., tn} the training subsets corresponding to sub-
models, withti = {(x, f(x))} ∀x ∈ li

n← 1

Repeat
(A) Choose a sub-modelmi to be fed with examples
(B) Draw a new examplex∗ in ui

(C) Label the instancex∗, ti ← ti ∪ (x∗, f(x∗))
(D) Train the sub-modelmi thanks toL, U andti
If the split criterion is satisfiedthen

(i) Separateli in two sub-setslj andlk the most homo-
geneous as possible
(ii) Duplicatemi into two sub-modelsmj andmk

(iii) n← n + 1
end If

until U 6= ∅

Algorithm 1: Adaptive Curiosity

The main purpose of this algorithm is to seek inter-
esting zones in the input space, at the same time the
machine discovers data to learn. The algorithm chooses
(as soon as possible) the examples belonging to the zones
where there is possible progress. Five questions appear :

- How to decide if a zone must be partitioned?
- How to carry out the partitioning?
- How many "Children" zones?
- How to choose zones to be fed in examples?
- What kind of sub-models must be used?



2.3 Original choices (Oudeyer and al, 2004)

2.3.1 Partitioning

A zone must be partitioned when the number of labelled
examples exceeds a certain threshold. Partitioned zones
are those which were preferentially chosen during pre-
vious iterations. These zones are interesting to be par-
titioned when more populated. Associated sub-models
have done important progress.

To cut a "parent" zone into two "children" zones, all
dimensions of the input spaceX are considered. For
each dimension, all possible cut values are tested using
the sub-model to calculate the variance of example’s pre-
dictions (on both sides of the separation). During this
stage, observable dataΦ is used. This criterion4 consists
in finding a dimension to cut and a cut value minimizing
the variance. This criterion elaborates preferentially pure
zones to facilitate the learning of associated sub-models.
Another constraint is added by the authors, the cut has to
separate labelled examples into two subsets whose cardi-
nalities are about balanced.

2.3.2 Zones selection

At every iteration, the sub-model which most improves is
considered as having the strongest potential of improve-
ment. Consequently, adaptive curiosity needs an estima-
tion of sub-model’s progress. Firstly, performances of
sub-models are measured on labelled data. The choice
of a performance measure is required. Secondly, sub-
model’s performances are evaluated on a temporal win-
dow. The sub-model which realizes the most important
progress is chosen to be fed with new examples uniformly
drawn.

3. Implementation for classification

In this section the relevance of the adaptive curiosity ap-
proach is evaluated. A toy example is used to examine
the behavior of this approach within the active learning
framework.

3.1 Transposition of original choices

3.1.1 Used model

A logistic regression implemented by a neural network is
used (Sarle, 1994), its architecture is represented in fig-
ure 1. This perceptron has two output neurons (O1 and
O2) which are dedicated to both classes. This model con-
sists in a single hidden neuron (H). The weights vec-
tor [w1..w5] gathers parameters which are adjusted dur-
ing the training stage. The first two network’s input (x1

andx2) correspond to co-ordinates of the instancex ∈ l.
Network’s skew is an additional input whose value is1.

4This recursive partitioning playing a discretization method. For a
state of the art on discretization methods, interested readers, can refer
to (Boulle, 2006).

It makes possible to vary ordinate at the origin of the lin-
ear separating which is learnt by the model. The outputs
of this model are normalized by a soft max function in
the interval[0, 1]. Outputs correspond to probabilities of
observing classes, conditionally to the instance which is
placed as input of the model. Neural network’s training
is stopped when the training error does not decrease more
than10−8, and the training step is fixed to10−2.

Figure 1: Neural network for logistic regression (when input
vector has 2 dimensions).

Logistic regression is used as a global model (m∗ on
figure 2) which is trained independently of the input space
partitioning, using examples which are selected by sub-
models (m1, m2...m5. on figure 2 represent sub-models
which are associated with each zone). Sub-models play
a role in the selection of zones and in the selection of
instances to be labelled only.m∗ is trained after using
these examples.m∗ allows to make a coherent compari-
son between adaptive curiosity and stochastic strategies.
Performances of the global model report only the quality
of selected examples.

Figure 2: Local and global models

3.1.2 Partitioning

Zones containing at least 30 labelled examples are split.
A cut separates labelled examples into two±25% bal-
anced subsets (according to the criterion of section 2.3.1).
These arbitrary choices are preserved for all experiments
in this paper.

3.1.3 Zones selection

The original criterion (section 2.3.2) which selects in-
teresting zones inX is modified to transpose the adap-
tive curiosity to classification problems. The objective
is to estimate sub-model’s progresses in each zone using
a measure of performance. The area under ROC curves
(Fawcett, 2003) (AUC) is used to evaluate performances
of sub-models on labelled examples which belong to the
zone (l).



Measure of performances: ROC curves plot the rate
of good predictions against the rate of bad predictions
on a two dimentional space. These curves are build
sorting instances of test set according to the output of
the model. ROC curves are usually built considering a
single class. Consequently,|Y| ROC curves are con-
sidered. AUC is computed for each ROC curve, and
the global performance of the model is estimated by the
mathematical expected value of AUC, over all classes :
AUCglobal =

∑|Y|
i=1 P (yi).AUC(yi)

Measure of progress: Progresses of sub-models are
estimated on a temporal window which is constituted
by two successive iterations. Progresses are defined as
follow, with l ∈ L the subset of labelled examples :
Progress(l) = AUCt

global(l) − AUCt−1
global(l)

3.2 Experimental conditions
3.2.1 Stochastic strategy

The "stochastic" strategy handles a global model and uni-
formly selects examples according to their probability
distribution. This strategy plays a role of reference and
is used to measure the contribution of adaptive curiosity.

3.2.2 Toy example

The toy example is a binary classification problem in a
two dimensional spaceX = x × y. We consider two
classes that are separated by the boundaryy = sin(x3),
on intervalsx ∈ [−2, 2] andy ∈ [−2, 2] (see figure 4).
In the following experiments, we use 2000 training ex-
amples (Φ) and 30000 test examples that are uniformly
generated over the spaceX.

3.2.3 Protocol

Beforehand, data is normalized using mean and variance.
At the beginning of experiments, the training set contains
only two labelled examples which are randomly chosen
among available data. At every iteration, a single exam-
ple is drawn in the current zone to be labelled and added
to the training set. Active learning stops when 250 exam-
ples are labelled5.

The used model is a logistic regression implemented
by a neural network (section 3.1.1). Two criteria (section
3.1.3) evaluating zones, which are respectively based on
the mean square error and the empirical risk, are tested
during two series of experiments. Adaptive curiosity is
compared to stochastic strategy (section 3.2.1) in a third
serie of experiments.

These experiments evaluate the average performance
of the system, according to the number of labelled exam-
ples. Each experiment has been done ten times in order
to obtain an average provided with its variance, for every
point of results curves.

5After 250 labelled examples, results does not vary significantly.

3.3 Results and discussion

3.3.1 Performances
The criterion which is used below to evaluate strategies
on the test sets is the AUC (see section 3.1.3).

In this part, performances of the global model (m∗ on
figure 2) are presented for adaptive curiosity approache.
Figure 3 draws AUC of global model, against the num-
ber of labelled examples. Natches on curves represent
variance of the 10 experiments (±2σ). Perfomances of
"stochastic" strategy also appears on figure 3. We notice
that adaptive curiosity gives better performances than the
stochastic strategy, nevertheless both strategies are very
close. Results on figure 3 show this first implementation
of adaptive curiosity does not improve significantly the
quality of selected examples.
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Figure 3: AUC versus number of examples

3.3.2 Selected examples

Figure 4 shows examples which have been selected dur-
ing an experiment evaluating zones using AUC. The par-
titioning of input space and the choice of examples are
relatively uniform; even if a little more populated area
can be noticed for each classes (at the top right and at the
middle bottom of figure 4). This strategy is unsatisfac-
tory because areas which contain most labelled examples
are not organized around the hidden pattern.
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Figure 4: AUC zones selection inX, with “◦” points of first
classe, and “•” points of second classe



4. A new criterion of zones selection

Adaptive curiosity tries to deal with the dilemma ex-
ploration / exploitation drawing new examples in zones
where progress is possible. To take in consideration this
dilemma in a better way, a new criterion of zones selec-
tion is proposed in this section. The rest of the adaptive
curiosity method is not modified. The new criterion is
composed by two terms which respectively correspond
to the exploitation and the exploration. A compromise
between both terms is provided by the new criterion.

4.1 Exploitation : Mixture rate

Among existing splitting criteria (Breiman, 1996), we
use the entropy as a mixture rate. The function
MixRate(l) (equation 1) use labels of examplesl ⊆ L

(which belong to the zone) to calculate the entropy over
classes.

Part "A" of equation 1 corresponds to the entropy of
classes that appear in a zone. Probabilities of classes
P (yi) are empirically estimated by a counting of exam-
ples which are labelled with the considered class.

The entropy belongs to the interval[0, log |Y|] (with Y

the number of classes). Part "B" of equation 1 normalizes
mixture rate in the interval[0, 1].

MixRate(l) = −
∑

yi∈Y

P (yi) log P (yi)

︸ ︷︷ ︸
A

×
1

log |Y|︸ ︷︷ ︸
B

(1)

with P (yi) =
|x ∈ l, f(x) = yi|

|l|

Mixture rate is the "exploitation" term of the proposed
criterion. By choosing zones which have strongest en-
tropy, the hidden pattern is locally clarified thanks to new
labelled examples which are drawn in these zones. The
model becomes very precise, on certain area of the space.
Figure 5 shows an experiment which is realized on the
toy example, using entropy to select interesting zones.
Selected examples are grouped around the boundary, but
there is a large part of the space which is not explored.
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Figure 5: Selected examples using Mixture Rate only inX, with
“◦” points of first classe, and “•” points of second classe

4.2 Exploration : Relative density
Relative density is the proportion of labelled examples
among available examples in the considered zone. Equa-
tion 2 expresses relative density, withφ ⊆ Φ the subset
of observable examples which belong to the zone. As
mixture rate, relative density varies in the interval[0, 1].

RelativeDensity(l, φ) =
|l|

|φ|
(2)

Relative density is the "exploration" term of the crite-
rion. The homogeneity of drawn examples over the in-
put space is ensured by choosing zones which have low-
est relative density. This strategy is different than a ran-
dom sampling because homogeneity of drawn examples
is forced. Figure 5 shows an experiment which is real-
ized on the toy example, using relative density to select
interesting zones. Input space partitioning and examples
drawing are homogeneous.
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Figure 6: Selected examples using Relative Density only inX,
with “◦” points of first classe, and “•” points of second classe

4.3 Compromise Exploitation vs. Exploration
The criterion evaluates the interest of zones, taking into
account both terms; mixture rate and relative density.
Equation 3 shows how each term is used. The param-
eter α ∈ [0, 1] corresponds to a compromise between
exploitation of already known mixture zones and explo-
ration of new zones.

Interest(l, φ) = (1 − α)MixRate(l) (3)

+α (1 −RelativeDensity(l, φ))
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Figure 7: Selected examples withα = 0.5 in X, with “◦” points
of first classe, and “•” points of second classe



The notion of progress is included in the criterion : the
relative density (which increases at the same time new ex-
amples are labelled) forces the algorithm to leave zones
in which mixture rate does not increase quickly. If there
is no thing else to discover in a zone, the criterion natu-
rally avoids it. In certain cases, the criterion prefers none
mixed zones which are not enough explored. This cri-
terion does not need a temporal window to evaluate the
progress of sub-models (see paragraph 2.3.2). So its im-
plementation is easier than original adaptive curiosity ap-
proach. Figure 7 shows an experiment which is realized
on the toy example, using the criterion withα = 1

2 . Input
space partitioning and examples drawing are organized
around the boundary without leaving any region of space.

4.4 Results and discussion

In this section, the toy example (section 3.2.2) as well
as the experimental protocol (section 3.2.3) is re-used.
Several series of experiments are realized forα =
[0, 1

4 , 1
2 , 3

4 , 1]. The purpose of this part is to estimate
the influence of this parameter on performances, and to
compare the obtained results to "stochastic" strategy.

Figure 8 shows performances of the proposed strategy
for various values ofα. The first curve represents the
"stochastic" strategy. Whenα = 0 only mixture rate is
considered by the criterion. In this case, the observed
performances are significantly lower than the "stochas-
tic" strategy considering less than 100 examples. This
phenomenon can be intuitively interpreted by a strong ex-
ploitation of detected mixture zones, to the detriment of
the remaining space. Whenα = 1 only relative density
is considered. In this case, adaptive curiosity gives lower
performances than the "stochastic" strategy considering
less than 70 examples. The best performances are ob-
served forα = 0.25. In this case, the maximum AUC
is reached very early (with 60 labelled examples). Ob-
served performances are superior to "stochastic" strategy
for all number of learnt examples. This value obviously
offers a good compromise between exploration and the
exploitation.
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Figure 8: AUC vs number of examples

These results show that adaptive curiosity can be ben-
eficially used in active learning framework, with the pro-

viso of using an adapted zones selection strategy. More-
over, the new strategy of zones selection is only based on
data typology. Sub-models are only used to carry out the
partitioning and not to choose interesting zones.

5. Comparison with two active strategies

The objective of this section is to compare the previously
obtained results with active learning approaches which
come from the literature. Two active strategies are con-
sidered in this paper : "uncertainty sampling" and "error
reduction sampling".

5.1 Uncertainty sampling

Uncertainty sampling is an active learning strategy
(Thrun and Möller, 1992) which is based on a confidence
measure associated by the model to its prediction. The
used model must be able to produce an output and to esti-
mate the relevance of its answers. The logistic regression
estimates the probability of observing each class, given
an instancex ∈ X. The model selects the one that maxi-
mizesP̂ (yj |x) (with yj ∈ Y) among all possible classes.
A prediction is considered as uncertain when the proba-
bility to observe predicted class is weak. This strategy of
active learning selects unlabelled examples which maxi-
mize the uncertainty of the model. The uncertainty can
be expressed as follows :

Incertain(x) =
1

argmaxyj∈YP̂ (yj |x)
x ∈ X

5.2 Sampling by risk reduction

The purpose of this approach is to reduce
the generalization error, E(M), of the model
(Roy and McCallum, 2001). It chooses examples to
be labeled so as to minimize this error. In practice
this error cannot be computed because the distribu-
tion of instances inX is unknown. Nicholas Roy
(Roy and McCallum, 2001) shows how to bring this
strategy into play since all the elements ofX are
unknown. He uses an uniform prior forP (x) :

Ê(Mt) =
1

|L|

|L|∑

i=1

Loss(Mt, xi)

In this paper, one estimates the generalization error
(E(M)) using the empirical risk (Zhu et al., 2003) :

Ê(M) = R(M) =

|L|∑

i=1

∑

yj∈Y

1{f(xi) 6=yj}P (yj |xi)P (xi)

wheref is the model which estimates the probability that
an example belong to a class,P (yi|xi) the real probabil-
ity to observe the classyi for the examplexi ∈ L, 1 the
indicating function equal to1 if f(xi) 6= yi and equal to0
else. ThereforeR(M) is the sum of the probabilities that



the model makes a bad decision on the training set (L).
Using a uniform prior to estimateP (xi), one can write :

R̂(M) =
1

|L|

|L|∑

i=1

∑

yj∈Y

1{f(xi) 6=yj} P̂ (yj |xi)

In order to select examples, the model is re-trained sev-
eral times considering one more “fictive” example. Each
instancex ∈ U and each labelyj ∈ Y can be associated
to constitute this supplementary example. The expected
cost for any single examplex ∈ U which is added to the
training set is then:

R̂(M+x) =
∑

yj∈Y

P̂ (yj |x)R̂(M+(x,yj)) with x ∈ U

5.3 Results on the toy example

Once again, the same toy example (section 3.2.2) and
the same experimental protocol (section 3.2.3) are used.
Experiments bring into play active strategies which were
presented in sections 5.1 and 5.2, using a global model.
As shown on figure 9, our adaptive curiosity strategy
(with α = 0.25) is the best active learning strategy. The
uncertainty sampling gives a very high variance (for a
question of legibility, natches on curve represent±σ

5 only
for uncertainty sampling). Moreover, the average per-
formance of this approach is very low in comparison to
stochastic sampling. So uncertainty sampling is a very
bad strategy for the considered toy example. Sampling
by error reduction gives better results than the other ac-
tive strategy, but the observed performances are always
lower than stochastic sampling and our adaptive curiosity
strategy.
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Figure 9: AUC of active learning methods

5.4 Results on real data

Experiments are conducted using also two pub-
lic data files coming from the"UCI repository"
(D.J. Newman and Merz, 1998). The datasets used are
the following :

Diabetes tracking: “Pima” data file deals with detec-
tion of diabetes problems for patients who are older than

21 years. The 786 subjects (Training : 354, Test : 354)
of this dataset are characterized by 9 medical indicators
such as blood pressure or body mass index. The con-
sidered problem is a binary classification between indi-
viduals who have (or not) diabetes problems. Figure
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Figure 10: AUC on "Pima"

10 shows performances of different strategies on "Pima",
according to the number of labelled examples. On this
dataset, sampling by risk reduction gives the best results.
The AUC values are highest, for all considered number of
examples. Only one curve of adaptive curiosity is shown
(this curve corresponds to the best value ofα). In this
case, adaptive curiosity gives good performances very
close to sampling by risk reduction. Moreover, adaptive
curiosity gives very low variance. Finally, uncertainty
sampling is the worse strategy, with AUC values which
are largely lower than stochastic strategy.

Credit approval: “Australian” dataset concerns credit
approvals. The 690 instances (Training : 345, Test :
345) of this dataset are defined by 14 attributes. All at-
tribute names and values have been changed to meaning-
less symbols to protect confidentiality of the data. The
considered problem is a binary classification on the ac-
ceptance of credits. Figure 11 shows performances
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Figure 11: AUC on "Australian"

of different strategies on "Australian". On this dataset,
adaptive curiosity gives the best performances. The max-
imum AUC value (0.9) is reached with few labelled ex-
amples (about80). When the number of labelled exam-
ples is greater than to120, performances of "stochastic"
strategy, sampling by error reduction and adaptive curios-
ity are very close. Once again, uncertainty sampling is the
worse strategy.



Remarks : These results show that adaptive curiosity
behaves similarly on the toy example and on real data. In
both cases, the trend is the same : uncertainty sampling
gives bad performances (worse than stochastic strategy);
sampling by risk reduction and adaptive curiosity give
close performances. However sampling by risk reduction
generate a computing time 7 times higher than adaptive
curiosity. Adaptive curiosity seems to be an efficient ac-
tive learning strategy, with the proviso of properly adjust-
ing the parameterα using a probabilistic estimation.

6. Conclusion

This paper shows that adaptive curiosity can be used as an
active learning strategy in machine leaning framework.
Adaptive curiosity is a strategy which is not dependent
of the predictive model. This strategy can be applied on
numerous real problems and is easy to use with existing
systems.

We have defined a new zones selection criterion which
gives good results on the considered toy example and on
real data. However, this criterion balances exploitation
and exploration using a parameter. Future works will be
done to make the algorithm autonomous to adjust this pa-
rameter (Osugi et al., 2005).

Adaptive curiosity was intially developped to deal with
high dimensionality input spaces, where large parts are
unlearnable or quasi-random. Future works will be real-
ized to estimate the interest of our new criterion in such
conditions. The influence of the complexity of the prob-
lem to be learnt (that is say, the number of examples nec-
essary to solve it) will be studded to.

The partitioning step of adaptive curiosity has aO(n3)
complexity and is prohibitive to treat high dimensional-
ity datasets. Moreover, the cut criterion involves two pa-
rameters : the maximum number of labelled examples
belonging to a zone, and the maximum balance rate of
labelled examples subsets of a zone split. The use of non
parametric discretization method (Boulle, 2006) could be
an efficient way to decide "when" and "where" a zone has
to be split. This aspect will be considered in future works.
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