
Purhase of data labels by bathes: study of theimpat on the planning of two ative learningstrategiesV. Lemaire, A. Bondu, and F. ClérotFrane Téléom R&D Lannion, TECH/EASY/TSIhttp://perso.rd.franeteleom.fr/lemairevinent.lemaire�orange-ftgroup.omAbstrat. Ative mahine learning algorithms are used when large num-bers of unlabelled examples are available and getting labels for them isostly (e.g. requires a human expert). Ative learning methods selet ex-amples to build a training set for a preditive model and aim at the mostinformative examples. The number of examples to be labelled at eah it-eration of the ative strategy is, most often, randomly hosen or �xed toone. However in pratial situations, this number is a parameter whihin�uenes the performane of the ative strategy. This paper studies thein�uene of this parameter on two ative learning strategies.1 IntrodutionMahine learning onsists of methods and algorithms whih learn behavior to apreditive model, using training examples. Passive learning strategies use exam-ples whih are randomly hosen. Ative learning strategies allow the preditivemodel to onstruts its training set in interation with a human expert. Thelearning starts with few labelled examples. Then, the model selets the exam-ples with no label whih it onsiders the most informative and asks their desiredassoiated outputs to the human expert. The model learns faster using ativelearning strategies, reahing the best performanes using less data. Ative learn-ing is more spei�ally attrative for appliations for whih data is expensive toobtain or to label.Ative learning strategies are also useful on �new problem�, for instane las-si�ation problem where informative examples or informative data are unknown.The question is how to obtain the information required to solve this new prob-lem? An operational planning of an ative algorithm applied on a �new lassi�-ation problem� ould be de�ned as the addition on individual ost, individualstep, whih allow to ath information to solve this �new problem�:� (I) an initialisation : whih, how and how many labels have to be buy at thebeginning (before the �rst learning)).� (PP ) a pre-partition [1℄;� at eah step of the ative strategy:



• (PS) a pre-seletion [2℄;
• (D) a diversi�ation [3℄;
• (B) the purhase of N example(s) (ustomarily N = 1)
• (E) the iteration evaluation [4℄;� (M) the model used.Planning the purhase of new examples (per pakages) is a ompromise (C)between these di�erent steps whih inlude the dilemma between exploration [5℄and exploitation [6℄, suh that:

C = EW (α1I + α2PP + α3PS + α4D + α5B + α5E + α6M)where EW is the evaluation of the overall proedure. The quality of an ativestrategy is usually represented by a urve assessing the performane of the modelversus the number of training examples labelled .For the oneption of an automati shunting system (for phone servers) whihtakes into aount emotions in speeh [7℄ (our �new problem�) this approah anbe used. In this ase, data is omposed by turn of speeh whih are exhangedbetween users and the mahine. Eah piee of data has to be listened by a humanexpert to be labelled as ontaining (or not) negative emotions. The purposeof ative strategies whih are onsidered in this artile is to selet the mostinformative unlabelled examples. These approahes minimize the labelling ostinduted by the training of a preditive model. For the oneption of automatishunting system (for phone servers), whih takes into aount emotions in speeh,our orpus ontains more than 100000 turns of speeh. Therefore the operationalplanning is very important.Two main ative learning strategies are used in the literature (see setion2). We suspet that suh ative learners are good for �exploitation� (labellingexamples near the boundary to re�ne it), but they do not ondut �exploration�(searhing for large areas in the instane spae that they would inorretly las-sify); even worse than the random sampling when labels are bought by paket.One way to examine the "exploration" behavior of these two main strategies isto buy more than one label at every iteration (the �weight� of α5 above), this isthe purpose of this paper.2 Ative Learning2.1 Notations
M ∈ M is the preditive model whih is trained using an algorithm L. X ⊆ R

nrepresents all the possible input examples of the model and x ∈ X is a partiularexample. Y is the set of the possible outputs of the model; y ∈ Y a lass labelrelated to x ∈ X.During its training, the model observes only one part Φ ⊆ X of the universe.The set of examples is limited and the assoiated labels are not neessarilyknown. The set of examples for whih the labels are known (at a step of the



training algorithm) is alled Lx and the set of examples for whih the labels areunknown is alled Ux with Φ = Ux ∪ Lx and Ux ∩ Lx ≡ ∅.The onept whih is learned an be seen as a funtion, f : X → Y, with f(x1)is the desired answer of the model for the example x1 and f̂ : X → Y the answerobtained of the model; an estimation of the onept. The elements of Lx and theassoiated labels onstitute a training set T . The training examples are pairs ofinput vetors and desired labels suh as (x, f(x)) : ∀x ∈ Lx, ∃(x, f(x)) ∈ T .2.2 Ative Learning MethodsIntrodution The point of view of seletive sampling is adopted [8℄ in thisartile. The model observes only one restrited part of the universe Φ ⊆ Xwhih is materialized by training examples without label. The image of a �bag�ontaining instanes for whih the model an ask assoiated labels is usuallyused to desribe this approah.Considering:
• M a preditive model provided with a training algorithm L
• Ux and Lx the sets of examples respetively not labelled and labelled
• n the desired number of training examples
• T the training set with ‖T‖ < n

• U : X×M → ℜ the funtion whih estimates the utility of an example forthe training of the modelRepeat(A) Train the model M using L and T (and possibly Ux).(B) Find the example suh that q = argmaxu∈Ux U(u,M)(C) Withdraw q from Ux and ask the label f(q) from the expert.(D) Add q to Lx and add (q, f(q)) to Tuntil ‖T‖ < nAlgorithm 1: Seletive sampling, Muslea 2002The problem of seletive sampling was posed formally by Muslea [9℄ (seeAlgorithm 1). It uses a utility funtion, Utility(u,M), whih estimates the utilityof an example u for the training of the model M. Using this funtion, the modelselets examples for whih it hopes the greatest improvement of its performanes,and shows these examples to the expert.The Algorithm 1 is generi insofar as only the funtion Utility(u,M) mustbe modi�ed to express a partiular ative learning strategy. How to measure theinterest of an example will be disussed now.



Unertainty sampling is an ative learning strategy [10℄ whih is based onthe on�dene that the model has in its preditions. The model must be ableto produe an output and to estimate the relevane of its answers. The modelestimates the probability of observing eah lass, given an instane x ∈ X. Thisestimate is done seleting the lass whih maximizes P̂ (yj |x) (with yj ∈ Y)among all possible lasses. The weaker the probability to observe the preditedlass, the more predition is onsidered unertain. This strategy of ative learningselets unlabelled examples whih maximize the unertainty of the model. Theunertainty an be expressed as follow :
Uncertain(x) =

1

argmaxyj∈YP̂ (yj |x)
x ∈ XSampling by risk redution The purpose of this approah is to redue thegeneralization error, E(M), of the model [11℄. It hooses examples to be labelledso as to minimize this error. In pratie this error annot be alulated beausethe distribution of instanes in X is unknown. Niholas Roy [11℄ shows how tobring this strategy into play sine all the elements of X are not known. He usesa uniform prior for P (x) whih gives :

Ê(Mt) =
1

|L|

|L|∑

i=1

Loss(Mt, xi)In this artile, one estimates the generalization error (E(M)) using the em-pirial risk [12℄ given by:
Ê(M) = R(M) =

|L|∑

i=1

∑

yj∈Y

1{f(xi) 6=yj} P (yj |xi)P (xi)where f is the model whih estimates the probability that an example belongto a lass, P (yi|xi) the real probability to observe the lass yi for the example
xi ∈ L, 1 the indiating funtion equal to 1 if f(xi) 6= yi and equal to 0 else.Therefore R(M) is the sum of the probabilities that the model makes a baddeision on the training set (L).Using a uniform prior to estimate P (xi), onean write :

R̂(M) =
1

|L|

|L|∑

i=1

∑

yj∈Y

1{f(xi) 6=yj} P̂ (yj |xi)In order to selet examples, the model is re-trained several times onsideringone more ��tive� example. Eah instane x ∈ U and eah label yj ∈ Y an beassoiated to onstitute this supplementary example. The expeted ost for anysingle example x ∈ U whih is added to the training set is then:
R̂(M+x) =

∑

yj∈Y

P̂ (yj |x)R̂(M+(x,yj)) with x ∈ U



Note - The two strategies desribed above are not the only ones whih exist.The reader an see a third main strategy whih is based on Query by Committee[13℄ and a fourth one where authors fous on a model approah to ative learningin a version-spae of onepts [14, 15℄.3 Number of labelled examples at every iterationIn pratie, the number of labelled examples at every iteration (noted n) is hosenin an arbitrary way. Nevertheless, this parameter in�uenes the implementationof an ative learning strategy. To understand the stakes of this problem, letus onsider both extreme situations. On the one hand the omputation timeneessary for the examples seletion "explodes", labelling a single example ateah iteration. In this ase, the appliation of ative learning strategies to largedata bases beomes problemati. The waiting time to present an example to thehuman expert is too long and beomes unreasonable. On the other hand theontribution of an ative learning strategy dereases, labelling a large numberof examples at every iteration. The regulation of the parameter n an be seenin an intuitive way as the researh for a ompromise between the omputationtime and the e�ieny of an ative learning strategy.Sine the purpose here is to measure the in�uene of the value on n. Theexperiments were arried out on several lassi�ation problems, using the samemodel and the two strategies de�ned in previous setion.3.1 Evaluation riteriaThe riterion whih is used to estimate model performanes is the area underROC urve [16℄ (AUC). ROC urves are usually built onsidering a single lass.Consequently, one handles as many ROC urves there are lasses. To build ROCurves in a m lasses problem, one onsiders a meta-lass Y1 = yi (whih is thetarget), others lasses onstitute the seond meta-lass Y2 =
⋃m

j=1 , j 6=i yj. AUCis alulated for eah ROC urve, and the global performane of the model isestimated by the mathematial expeted value of AUC, over all lasses :
AUCglobal =

|Y|∑

i=1

P (yi).AUC(yi) (1)AUC an be seen as a proportion of the spae in whih ROC urves arede�ned. This area is equal to 1 if the model is perfet and is equal to 1
2 forrandom models. AUC has interesting statistial properties. It orresponds tothe probability that the model attributes a more important sore, to an instanebelonging to the good lass, than an instane of another lass [16℄.3.2 ProtoolBeforehand, data is normalized using mean and variane. At the beginning ofexperiments, the training set ontains only two labelled examples whih are



randomly hosen among available data. At eah iteration, n examples are drawnin the data set to be labelled and added to the training set. The �rst series ofexperimentation adds 1 example at eah iteration using an ative strategy. Thenfour other series of experimentation are repeated by inreasing, every time, thenumber of added examples; the quantity of information bring to the model (n=1,4, 8, 16).The lassi�er is a Parzen window whih uses a Gaussian kernel (σ, the param-eter of the kernel is adjusted using a ross validation as in [17℄). Eah experimenthas been done ten times in order to obtain an average and a variane, for everypoint of the result urves.3.3 Used modelThe large range of models whih are able to solve lassi�ation problems andsometimes the great number of parameters useful to use them, may representdi�ulties to measure the ontribution of a learning strategy.A Parzen window, with a Gaussian kernel [17℄, is used in experiments belowsine this preditive model uses a single parameter and is able to work with fewexamples. The �output� of this model is an estimate of the probability to observethe label yj onditionally to the instane u:
P̂ (yj |u) =

∑N

n=1 1{f(ln)=yj} K(u, ln)
∑N

n=1 K(u, ln)
with ln,∈ Lx and u ∈ Ux ∪ Lx (2)where

K(u, ln) = e
||u−ln||2

2σ2First, a Parzen window has been realized using all training example to es-timate if this model is able to solve the problem. For the three databases theanswer has been positive (a good value on the AUC has been obtained). Con-sequently, Parzen windows are onsidered satisfying and valid for the followingative learning proedures with regards the in�uene of n.The optimal value of the kernel parameter was found using a ross-validationon the average quadrati error, using all available training data [17℄. Thereafter,this value is used to �x the Parzen window parameter. Sine the single parameterof the Parzen window is �xed, the training stage is redued to ount instanes(within the support of the Gaussian kernel). The strategies of examples seletionare thus omparable, without being in�uened by the training of the model.4 Experimentations4.1 DatabaseThree publi data sets whih ome from the "UCI repository" (http://www.is.ui.edu/~mlearn/MLRepository.html) are used :



� Glass Identi�ation Database: Classi�ation of 6 types of glass de�ned interms of their oxide ontent (i.e. Na, Fe, K, et). All attributes are numeri-valued. This data set inludes 214 instanes (Train: 146, Test: 68) hara-terized by 9 attributes whih are ontinuously valued. The 6 lasses are thetype of glass. The parzen window lassi�es an example to one of these 6lasses.� Iris Plant Database: The data set ontains 3 lasses of 50 instanes eah,where eah lass refers to a type of iris plant. This data set inludes 150�owers (Train: 90, Test: 60) desribed by 4 attributes whih are ontinuouslyvalued. The parzen window lassi�es an example to one of these 3 lasses.� Image segmentation Database: The instanes were drawn randomly froma database of 7 outdoor images. The images were hand segmented to reatea lassi�ation for every pixel. This database inludes 2310 images hara-terized by 9 pixels (Train: 310, Test: 2000).The parzen window lassi�es anexample to one of these 7 lassesFor the three data sets, whih ontain more than two lasses, the performanesare evaluated using equation 1.4.2 ResultsFigures 1, 2, 3 show obtained results on the three data sets. On every �gure: (i)from up to down and left to right: 1, 4, 8 or 16 examples added at eah iteration ofthe ative algorithm; (ii) on eah sub-�gure horizontal and vertial axis representrespetively the number of examples labelled used and the AUC (see setion3.1). On eah urve test results using sampling based on unertainty, samplingbased on risk redution and random sampling are plotted versus the number ofexamples labelled in the training set. The nathes represent the variane of theresults (±2σ). Results on AUC show that, on these three data sets it is di�ultto point to a strategy. If we onsider that adding:� one example at every iteration: the unertain strategy wins on Glass but therisk strategy wins on the others data sets.� four examples at every iteration: the unertain strategy wins on Glass butthe risk strategy and the random strategy share the suess on the othersdata sets.� eight or sixteen examples at every iteration: the random strategy wins onthe three data sets.By inreasing the number of examples labelled at eah iteration, the ativestrategies are less and less ompetitive ompared to the random strategy. Wenotie eah time that: (i) the results do not look so di�erent for di�erent bathsizes (but ative strategies allow to obtain the optimal AUC with a smallernumber of examples) (ii) the random strategy beomes more powerful than thetwo ative strategies when n beomes large, partiularly for n ≥ 8.
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RiskFig. 3. Results on the data set Segment5 Conlusion and future worksThe obtained results show that the number of labelled examples at eah iterationof a proedure of ative learning in�uenes the quality of the involved model.The experiments whih were arried out on�rm the intuition that the ontribu-tion of an ative strategy (relatively to the random strategy) dereases when oneinreases the number of labelled examples. Methods whih allow to buy at eahiteration the same number (n>1) number of labels exist [18, 3℄ to try to inorpo-rate a part of exploration. But to our knowledge none optimizes the value of Ninto eah iteration (whih hoose a variable number of examples and/or whihselet "pakages" of examples in an optimal way) . We are urrently interestedon this subjet: for example the onept of "trajetory" of a model in the spaeof the deisions it has to take during its training.The elaboration of a riterion (EW ) the evaluation (whih measures the on-tribution of a strategy ompared to the random strategy on the whole data set)should be interesting: the performane riterion used an take several di�erentways aording to the problem. This type of urve allows only omparisons be-tween strategies in a puntual way, i.e. for a point on the urve (a given numberof training examples). If two urves pass eah other, it is very di�ult to deter-mine if a strategy is better than another (on the total set of training examples).This point will be disussed in a future paper.Finally we note that the maximal number of examples to labelled, or anestimation of the progress of the model, have to be used to stop the algorithm.
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