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Abstract. In the field of neural networks, feature selection has been
studied for the last ten years and classical as well as original methods
have been employed. This paper reviews the efficiency of four approaches
to do a driven forward features selection on neural networks . We assess
the efficiency of these methods compare to the simple Pearson criterion
in case of a regression problem.

1 Introduction

Up to 1997, when a special issue on relevance including several papers on vari-
able and feature selection was published, few domains explored more than 40
features. The situation has changed considerably in the past few years, notably
in the field of data-mining with the availability of ever more powerful data ware-
housing environments. A recent special issue of JMLR [1] gives a large overview
of techniques devoted to variable selection and an introduction to variable and
feature selection can be found in this special issue [2]. A challenge on feature se-
lection has been organized during the NIPS 2003 conference to share techniques
and methods on databases with up to 100000 features. This challenge lead to
provide an interesting and exhaustive book [3].

The objective of variable selection is three-fold: improve the prediction per-
formance of the predictors, provide faster and more cost-effective predictors,
and allow a better understanding of the underlying process that generated data.
Among techniques devoted to variable selection, we find filter methods, which
select variables without using a model (for example by ranking them with cor-
relation coefficients), and subset selection methods, which assess subsets of vari-
ables according to their usefulness to a given model. Wrapper methods [4] use
the elaborated model as a black box to score subsets of variables according to
their usefulness for the modeling task. In practice, one needs to define: (i) how to
search the space of all possible variable subsets; (ii) how to assess the prediction
performance of a model to guide the search and halt it; (iii) how to select the
predictor to use.

We discuss in this paper the problem of feature selection and review four
methods which have been developed in this field. The main idea is to compare
four popular techniques in sense of methods which are integrated in data mining
software (Clementine, SAS, Statistica Data Miner...). This paper presents the



comparison specifically for neural networks (NN) therefore point (iii) listed above
is fixed.

The remainder of the document is organized as follows. Next section deals
with classical ingredients which are required in feature selection methods (1) a
feature evaluation criterion to compare variable subsets (2) a search procedure,
to explore (sub)space of possible variable combinations (3) a stop criterion or a
model selection strategy. The section 3 presents the driven forward strategy and
four methods to do variable selection with neural networks. Section 4 proceeds
with an experimental evaluation on each method on the driven forward strategy
for a regression problem.

2 Basic ingredients of feature selection methods

For all methods in this paper, the notations employed are (1) about data dis-
tribution: J the number of variables in the full set; I the number of exam-
ples in the training set; Vj the variable for which we look for the importance;
Vij the realization of the variable Vj for the example i; Im the input vector
part of the example m with n components; PVj

(u) the probability distribution
of the variable Vj ; PI(ν) the probability distribution of examples I; and (2)
about neural network: OL the output layer; HL the hidden layer; IL the in-
put layer; wwz a weight between a neuron w and a neuron z; f the predictive
model (here a neural network); Ym the output vector part of the example m;

and fj(a; b) = fj(a1, ..., an; b) = f(a1, ..., aj−1, b, aj+1, ..., an) where ap is the pth

component of the vector a. Finally we note S(Vj |f) as being the importance of
the variable Vj using the predictive model f . Note that all methods are pre-
sented for an output vector which has only one component but extension to
many component is straightforward.

2.1 Features evaluation

Several evaluation criteria, based either on statistical grounds or heuristics, have
been proposed for measuring the importance of a variable subset. For regression,
classical candidates are prediction error measures. We will use the mean squared
error to compare results in section 4. A survey of classical statistical methods
may be found in [5] for regression, [6] for classification, [3] for both; and [7] for
neural networks .

2.2 Search strategy

In general, since evaluation criteria are non monotonous, comparison of fea-
ture subsets amounts to a combinatorial problem which rapidly becomes com-
putationally unfeasible. Most algorithms are based upon heuristic performance
measures for the evaluation and sub-optimal search. Most sub-optimal search
methods follow one of the following sequential search techniques [8]: (a) start
with an empty set of variables and add variables to the already selected variable



set (forward methods); (b) start with the full set of variables and eliminate vari-
ables from the selected variable set (backward methods); (c) start with an empty
set and alternate forward and backward steps (stepwise methods). In this paper
we will compare criteria only with a driven forward strategy described below.

2.3 Driven Forward Selection.

In this paper we define a driven forward selection strategy such as: 1) compute
the variable importance using a criterion; 2) rank the variables using the result
of the first step; 3) train models where variables are added more and more using
the ranking of the variable importance computed in the second step; 4) observe
the results versus the number of variables used. This strategy is driven since the
first ranking is not questioned and therefore one have at most J model to train.

A simple driven forward strategy uses, for example, the Pearson correlation
coefficient which is adapted for linear dependencies1 and which is not model
oriented (it does not take into account the regression model during selection):

S(Vj |f) = S(Vj) =

∑I

i=1

(

Vij − Vj

) (

Yi − Y
)

√

∑I

i=1

(

Vij − Vj

)2∑I

i=1

(

Yi − Y
)2

(1)

For Pearson criterion the driven strategy described is clear since this criterion
does not need to use a model in the first step (S(Vj |f) = S(Vj)). However any
wrapper criterion which allows to measure variable importance could be use in
the same way. In this case there is a preliminary step which is to train a model
which uses the full set. Then the first step compute the variable importance
using this model (S(Vj |f)). Others step are not changed. What we can except
is that all criteria studied in this paper can achieved better results than using
Pearson criterion.

2.4 Stopping criterion

No stopping criterion has been used in this paper. The performance obtained by
each variable selection method has been memorized to be able to plot all results
on all selected variables subset with all criteria.

3 Features Selection Methods with Neural Networks

Compared

3.1 A Feature Selection Method based on Empirical Data
Probability

The method described here [9] combines the definition of the ‘variable impor-
tance’ as given in Féraud et al. [10] with an extension of Breiman’s idea [11].

1 To capture non linear dependencies, the mutual information is more appropriate but
it needs estimates of the marginal and joint densities which are hard to obtain for
continuous variables. This method has not been tested in this paper.



This new definition of variable importance both takes into account the prob-
ability distribution of the studied variable and the probability distribution of
the examples. The importance of an input variable is a function of examples
I probability distribution and of the probability distribution of the considered
variable (Vj). This method is tested for the first time in this paper on a regression
problem.

The importance of the variable Vj is the sum of the measured variation
of the predictive model output when examples are perturbed according to the
probability distribution of the variable Vj . The perturbed output of the model
f , for an example Ii is the model output for this example but having exchanged

the jth component of this example with the jth component of another example,
k. The measured variation, for the example Ii is then the difference between
the ‘true output’ fj(Ii;Vij) and the ‘perturbed output’ fj(Ii;Vkj) of the model.
The importance of the variable Vj is computed on both the examples probability
distribution and the probability distribution of the variable Vj . The importance
of the variable Vj for the model f is then:

S(Vj |f) =

∫∫

PVj
(u)duPI(v)dv |fj (Ii;Vij) − fj (Ii;Vkj)| (2)

Approximating the distributions by the empirical distributions, the compu-
tation of the average of S(Vj |f) would require to use all the possible values of
the variable Vj for all examples available such as:

S(Vj |f) =
1

I

∑

i∈I

∑

k∈I

|fj (Ii;Vij) − fj (Ii;Vkj)| (3)

As the variable probability distribution can be approximated using representa-
tive examples (P ) of an ordered statistic:

S(Vj |f) =
1

I

∑

i∈I

∑

p∈P

|fj (Ii;Vij) − fj (Ii; vp)|Prob(vp) (4)

This method is especially useful when Vj takes only discrete values since the
inner sum is exact and not an approximation. View the size of the database
used for comparison section 4 P has been fixed to 10 (the deciles are used).
For all deciles we chose to used their median as representative values. This
approximation allows to speed up the computation and prevents errors which
are due to outliers or pathological values.

3.2 A Features Selection Method based on Neural networks weights

This method uses only the network parameter values. Although this is not sound
for non linear models, there have been some attempts for using the input weight
values in the computation of variable relevance. The weight value in the input



layer2, IL, can provide information about variable importance. The variable
importance based on neural networks weights is:

S(Vj |f) =

∑

z∈HL ‖wzj‖
∑

z∈HL

∑

w∈IL ‖wzw‖
(5)

3.3 A Features Selection Method based on saliency

Several methods propose to evaluate the relevance of a variable by the derivative
of the error or of the output with respect to this variable. These evaluation
criteria are easy to compute, most of them lead to very similar results. These
derivatives measure the local change in the outputs with respect of a given input,
the other inputs being fixed. Since these derivatives are not constant as in linear
models, they must be averaged over the training set. For these measures to be
fully meaningful inputs should be independent and since these measures average
local sensitivity values, the training set should be representative of the input
space (which is a minimum assumption).

The Saliency Based Pruning method [13] uses as evaluation criterion the
variation of the learning error when a variable Vj is replaced by its empirical
mean Vj (zero if variables are assumed centered). The saliency is:

S(Vj |f) =
1
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(6)

This is a direct measure of the usefulness of the variable for computing the
output. Changes in MSE are not ambiguous only when inputs are not correlated.
Variable relevance being computed once here, this method does not take into
account possible correlations between variables.

3.4 A Features Selection Method based on output derivatives

Several authors have proposed to measure the sensitivity of the network trans-
fer function with respect to input Vj by computing the mean value of outputs
derivative with respect to Vj over the whole training set. Most measures use
average squared or absolute derivatives [14–16]. The variable importance is:

S(Vj |f) = 1

I

∑I

i=1
(∂f/∂Vj(Vij)). These measures being very sensitive to the

input space representativeness of the sample set, several authors have proposed
to use a subset of the sample in order to increase the significance of their rele-
vance measure. In order to obtain robust methods, “non-pathological” training
examples should be discarded. A parameter, here ǫ, is needed to adjust the

2 A more sophisticated heuristic, but very close to the one above in case of a single
output neuron, has been proposed by Yacoub and Bennani [12], it exploits both the
weight values and the network structure of a multilayer perceptron.



range variation over Vj given an example (Vij). In this paper we choose to use
the definition:

S(Vj |f) =
1

I

I
∑

i=1

|fj(Ii, V ij − ǫ) − fj(Ii, V ij + ǫ)| (7)

4 Experimental results on Orange Juice Database

4.1 Experimental conditions and results presentations

Database: The database has been provided by Prof. Marc Meurens, Univer-
sité Catholique de Louvain, BNUT unit. The goal is to estimate the level of
saccharose of an orange juice from its observed near-infrared spectrum. The
training set is constituted of 150 examples described by 700 features (variables)
and the test set is constituted of 68 examples described also by 700 features.
There is no missing value and variables are continuous but note that the num-
ber of training examples (150) is more of four times as small as the num-
ber of features (700). Nothing else is known about this database (see http:

//www.ucl.ac.be/mlg/index.php?page=DataBases). The preprocessing used
for input variable as well as for output variable is only a min-max standardiza-
tion. All the results presented below (the mean squared error) are computed on
the standardized output.

Cross Validation: For all experimental conditions, 25 trainings are per-
formed with different initialization of the weights and different training, valida-
tion set as follow: we have drawn a training set (100 examples) from the training
set available on the web site (among 150) and the others example of the train-
ing set has been used as a validation set. Each training is stopped when the
cost (the mean squared error) on the validation set does not decrease since 200
iterations. At the end of each training, the global mean squared error on the
test set is computed for comparison purposes. In the driven forward strategy
the variables importance are not questioned. So, when one gives results over 25
training there are results over 25 forward procedures (for a given step, a given
number of variables, the variables chosen are not necessary the same to compute
the mean errors presented in Figure 7).

Neural network topology and training parameters: A single multi-
layer perceptron with 1 hidden layer, tangent hyperbolic activation function and
stochastic back-propagation of the squared error as training algorithm has been
used. Using full set of variables the learning rate has been determined to be
α=0.001 and the number of hidden unit has been determined to be HL=15.
Again, these parameters has been evaluated over 25 training from a range vari-
ation of α from 0.0001 up to 0.1 and HL from 1 up to 30.

Regularization: The orange juice database is constituted of 700 variables
which are very correlated to the output target (see Figure 1, coefficients be-
tween normalized input variables and the normalized output). Methods pre-
sented above test the importance of all variables one by one so a successful
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regularization method has to be employed. We added a regularization term ac-
tive only on directions in weight space which are orthogonal to the training up-
date [17]. This regularization prevents correlation effects between input variables
without learning degradations. The regularization term (in batch procedure for
it) has been always 10−3 of the learning rate..

4.2 Comparison using the full set and a same neural network

Figures 3,4,5,6 show variable importance found using the five criterion described
above (except Pearson criterion for which one can see this representation in
Figure 2) and computed with the same neural networks trained with the full
set of variables. Figure 3, Figure 4, Figure 5, Figure 6 show respectively versus
the number of the variables the “Norm Importance” obtained using equation 5,
“Saliency Importance” obtained using equation 6, “Local Importance” obtained
using equation 7 and “Global Importance” obtained using equation 4 . On all
sub figure horizontal axis represents the number of the variables and vertical axis
represents (in log-scale to focus on first important variables) the ranking of the
variables from 1 (the most useful) to 700 (the less useful). This representation
identifies clearly first important variables for all criterion using the same neural
network and allows to compare behaviors.

The four criteria Norm, Saliency, Local and Global do not agree with Pearson
criterion (see Figure 2). For criteria Norm, Local and Global important variables
are near the six hundredth variable. Saliency criterion selects variables near the
130th. Global criterion ranks this group after the group near the six hundredth
variable. Among group near the 600th variable Global criterion does not order
variables as Norm and Local criteria (the 562th before the 592th). Norm and
Local criteria very agree on this regression problem. Results presented in next
section with the driven forward procedure will give more results elements.

4.3 Results with the driven forward strategy

Whatever is the neural network trained the results obtained using Pearson cri-
terion will be the same since this criterion does not use the model to compute
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variable importance. But it is not the case for others criteria described above.
The ranking obtained can depend on the neural network trained and therefore
of its initialization, the order to present examples, etc... For all criteria 20 neu-
ral networks (k = 20) have been trained using the full set of variables. The
mean value of the criterion has been computed on all neural networks such as:
S(Vj |f) = 1/k

∑

k S(Vj |fk). Using this mean value on all variables a ranking has
been determined. Table 1 presents this ranking. Then this ranking has not been
questioned. It is used to train neural networks which used one, two or more im-
portant variables. Experimentations have been made twenty times to obtained
mean results using one, two or more important variables on all criteria.

Table 1. The ten more important variables.

Pearson 80 273 85 332 617 71 83 268 599 118
Norm 595 596 592 593 590 594 591 570 597 598
Saliency 595 131 1 2 129 3 130 592 6 593
Local 595 592 596 593 590 594 591 599 597 598
Global 570 595 592 596 590 593 594 572 569 571

The Figure 7 presents results obtained with the four methods and Pearson
criterion which is a baseline results. Results after 100 variables are not presented
since they are the same for all criteria and are the same than using the full



set. Each plot represents the mean results of the mean squared error on the
normalized output through 20 forward procedures. The standard deviation is
not represented for reading reasons and a figure which is not overloaded. The
standard deviation is ± 0.003 for all points. For example, for the Pearson criterion
and using ten variables, the result is therefore 0.035 ± 0.003.
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On this regression problem, which is compose of a full set of 700 variables
and few examples for training, we observe the following ranking of criteria (from
the best to the least): (1) Global, (2) Saliency (3) Local and Norm, (3) Pearson.
With less than 100 variables criteria Global, Saliency and Pearson obtain the
same results than using all variables (0.011 ± 0.003). To obtain this performance
Norm and Local criteria need 150 variables. Significant degradations on results
appear under 60 variables on all criteria. The Global criterion gives excellent
and best results: better performances of the neural network trained are always
obtained before others (until all criteria allow to obtained same results).

To analysis more in depth the difference in term of performances we focus on
the 131th variable since there is a disagreement between criteria for this variable.
We plot on Figure 8 ordered values of the 131th variable on horizontal axis and
the estimated output on the vertical axis (using the same neural network as in
section 4.2). Clearly for this variable, which constituted by two groups of values,
it is not relevant to measure its importance with saliency: its mean is out of the
data distribution. This discontinuity explains the overestimation of the variable
importance using Saliency criterion. On the other hand, Local criterion does not
rank this 131th variable in the ten most important variables since derivatives
importance is not adapted to bimodal distribution. The Global criterion where
data distribution is used is able to take into account bimodal distribution. It
ranks this variable as an important variable. This type of difference in behaviors
explains the difference in performances.



5 Conclusion

These comparisons show that, on this real application, it is possible to obtain
excellent performances with the four criteria with a large preference for the
Global criterion; knowing that the database used is a particular database with
very correlated variables and few examples compare to the number of the full
set of variables. Future work should address experiments on larger data sets3.
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