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Abstract— We organized a data mining challenge in “unsu-
pervised and transfer learning” (the UTL challenge), in collab-
oration with the DARPA Deep Learning program. The goal of
this year’s challenge was to learn good data representations
that can be re-used across tasks by building models that
capture regularities of the input space. The representations
provided by the participants were evaluated by the organizers
on supervised learning “target tasks”, which were unknown
to the participants. In a first phase of the challenge, the
competitors were given only unlabeled data to learn their
data representation. In a second phase of the challenge, the
competitors were also provided with a limited amount of labeled
data from “source tasks”, distinct from the “target tasks”. We
made available large datasets from various application domains:
handwriting recognition, image recognition, video processing,
text processing, and ecology. The results indicate that learned
data representation yield results significantly better than what
can be achieved with raw data or data preprocessed with
standard normalizations and functional transforms. The UTL
challenge is part of the IJCNN 2011 competition program1. The
website of the challenge remains open for submission of new
methods beyond the termination of the challenge as a resource
for students and researchers2.

I. INTRODUCTION

This challenge addressed a question of fundamental and
practical interest in machine learning: the assessment of data
representations produced by unsupervised learning proce-
dures, for use in supervised learning tasks. We evaluated the
claim that unsupervised learning may be beneficial to learn
better data representations in Deep Learning architectures,
including deep belief networks and multi-layer neural net-
works, particularly by capitalizing on the availability of large
amounts of unlabeled data. The challenge also addressed the
evaluation of transfer learning methods capable of producing
data representations useful across many similar tasks, after
only training on one of them.

Classification problems are found in many application
domains, including classification of images or videos, speech
recognition, medical diagnosis, marketing, and text catego-
rization. The category identifiers are referred to as “labels”.
Predictive models capable of classifying new instances (cor-
rectly predicting their labels) usually require “training”, or
parameter adjustment, with large amounts of labeled training
data (pairs of examples of instances and associated labels).
Unfortunately, few labeled training data may be available
due to the cost or burden of manually annotating data.
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Labeling data is not only expensive, it is tedious. In recent
years, Amazon Mechanical Turk and other crowd-sourcing
platforms have emerged as a way of rapidly labeling large
datasets. However, these are not appropriate for personal or
sensitive data. To help us quickly tag our personal pictures,
videos, and documents, we need systems that can learn with
very few training examples. “Active learning”, which was
the topic of the challenge we organized for IJCNN 2010,
helps reducing the burden of labeling by letting the learning
machine query only the examples for which the labels are
informative. In this challenge, we attacked the problem from
a different angle: we examined whether one can exploit data
similar to the target task data (labeled with different types
of labels or completely unlabeled) to produce more salient
representations.

Following the seminal work in multi-task learning [1],
there has been considerable progress in the past decade
in developing cross-task transfer using both discriminative
and generative approaches in a wide variety of settings [2].
These approaches include multi-layer structured learning
machines from the “Deep Learning” family (Convolutional
neural networks, Deep Belief Networks, Deep Boltzmann
Machines) [3], [4], [5], [6], sparse coding [7], [8], and matrix
factorization methods, metric or kernel learning methods [9],
[10], [11], [12], [13]. “Learning to learn” new concepts [14]
is a promising area of research in both machine learning
and cognitive science revolving around these ideas. Impor-
tant progress has also been made in purely unsupervised
learning [15], [16], [17], [18], [19]. However, these advances
tend to be ignored by practitioners who continue using a
handful of popular algorithms like PCA, ICA, k-means, and
various hierarchical clustering methods [20]. The goal of this
challenge was to perform an evaluation of unsupervised and
transfer learning algorithms free of inventor bias to help to
identify and popularize algorithms that have advanced the
state of the art.

We made available five larger datasets from various do-
mains. The participants needed to exploit the data pro-
vided for learning and submit results (transformed data
representations or kernel matrices) on a validation set and
a final evaluation set, in a prescribed format. The data
representations or kernel matrices were evaluated by the
organizers on supervised learning tasks that were unknown to
the participants. To emphasize the capability of the learning
systems to develop useful abstractions, such tasks made use
of very few labeled training examples and the classifier used
was a simple linear discriminant classifier. The challenge,
which launched in December 2010, ended in April 2011. This
paper presents the design and the results of the challenge.



II. SETTING AND TASKS OF THE CHALLENGE

The datasets of the challenge (Table I) were split is
illustrated in Figure 1 into a large development set, a
validation set and a final evaluation set. The goal of the
challenge was to produce good data representations on
the final evaluation set. The validation set is similar to
the final evaluation set; it was provided for practice. The
assessment of the data representations was carried out on
target tasks (that are supervised learning classification tasks),
using labels known only to the competition organizers. The
target tasks for the validation set and the final evaluation set
are different (they correspond to different sets of target task
labels). During the development period, online feedback was
provided only on the validation set. The results on the final
evaluation set were revealed only at the end of the challenge.

For clarity of the scientific evaluation, the challenge
proceeded in two phases. The first phase focused strictly
on unsupervised learning. During that phase, no label was
provided to the participants. It was then followed by a
second phase on transfer learning for which some labels on
source tasks, distinct from the target tasks, were provided
for a subset of the development set (source task labels).
We call that setup “cross-task transfer learning” [2] (labels
available source tasks, not for target tasks) to contrast it with
“inductive transfer learning” in which labels are available
both for source and target tasks. For instance, consider
the toy dataset ULE (handwritten digits). The development
set, which contains examples of all the digits, is initially
unlabeled for unsupervised learning. The development set
labels made available for transfer learning include only
examples of classes 4, 5, 8, and 9 (source tasks). The target
tasks are associated with the validation and final evaluation
sets: for the validation set, the classification of digits 1, 3,
and 7; for the final evaluation set, the classification of digits
0, 2, and 6.

TABLE I
UTL CHALLENGE DATASETS

All features are numeric (no categorical variables). There are no missing
values. Feat. is the number of features; Spars. is the sparsity of the
data calculated as the fraction of zero entries in tha data matrix; Devel.
and Transf. are the number of examples in the development dataset and
the number of source task labels released in the transfer learning phase
respectively. The validation and final evaluation datasets consist of 4096
examples each (not shown). The ULE dataset was not part of the challenge.

Dataset Domain Feat. Spars. Devel. Transf.
AVICENNA Handwriting 120 0% 150205 50000
HARRY Video 5000 98.1% 69652 20000
RITA Images 7200 1.1% 111808 24000
SYLVESTER Ecology 100 0% 572820 100000
TERRY Text 47236 99.8% 217034 40000
ULE [toy] Handwriting 784 80.9% 26808 10000

We selected five different application domains that are
illustrative of fields in which transfer learning is applicable:3

3A detailed technical report on the datasets was made available after
the challenge ended: http://www.causality.inf.ethz.ch/ul_
data/DatasetsUTLChallenge.pdf

Fig. 1. Data split in the UTL challenge

Handwriting recognition: Historical archives are diffi-
cult to process by traditional Optical Character Recognition
(OCR) methods, due to their ancient scripts no longer in
use. Thousands of different scripts in use worldwide and
large volumes of scanned documents are waiting to be
indexed to facilitate retrieval. Transfer learning methods
could accelerate the application of handwriting recognizers
by reducing the need for using human experts to label
data. Professor Mohamed Chériet, École de Technologie
Supérieure, University of Quebec, Montréal, Canada, and
his students prepared a large corpus of historical Arabic
documents for this challenge: the AVICENNA dataset. The
toy dataset ULE of handwritten digits (provided for practice
purpose only) was derived from the MNIST data made
available by Yann LeCun and Corinna Cortes4.

Video processing: The identification and recognition of
gestures, postures and human behaviors has gained impor-
tance in applications such as video surveillance, gaming,
marketing, computer interfaces and interpretation of sign
languages for the deaf. The HARRY dataset was constructed
from the KTH human action recognition dataset (collected
and made publicly available by Ivan Laptev and Barbara
Caputo)5 and the Hollywood 2 dataset of human actions
and scenes (collected and made publicly available by Marcin
Marszalek, Ivan Laptev, and Cordelia Schmid)6. The data
include video clips designed to illustrate human actions
(KTH data) and clips of Hollywood movies (Hollywood2).
The task is to recognize human actions like hand clapping,
picking up a phone, walking, running, driving a car, etc. The
data were preprocessed into a “bag” of STIP features [21].

Image recognition: Object recognition in images is a
classical pattern recognition task. Its practical importance
is growing particularly in image retrieval applications, in-
cluding for Internet search. The RITA dataset we propose

4http://yann.lecun.com/exdb/mnist/
5http://www.nada.kth.se/cvap/actions/
6http://www.irisa.fr/vista/Equipe/People/Laptev/

download.html



in the challenge was constructed from the CIFAR dataset
of Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton7, a
subset of the 80 million Tiny images dataset (collected and
made publicly available by Antonio Torralba, Rob Fergus,
and William T. Freeman)8. See [22] for more details. The
original data representation was enriched with new features
and transformed to obfuscate the features.

Ecology: The state of the world is constantly monitored
from space via satellite images. Airborne imaging systems
also allow monitoring vegetation and activity. These massive
datasets need to be processed automatically to assist experts
in ecology, geography, geology, climatology, archaeology,
and seismology. We used data from the US Forest service
to illustrate such tasks on the SYLVESTER dataset. The
original dataset called Covertype was obtained from the UCI
Repository of Machine Learning Databases9.

Text processing: Internet search engines process billions
of queries daily to rank web pages. The ever increasing
number of documents available on the Internet makes this
task ever more difficult. Very few labeled data are available,
but millions of documents must be indexed. The TERRY
dataset used in this challenge is a subset of the RCV1-v2
Text Categorization Test Collection derived from Reuter’s
news articles formatted and made publicly available by
David Lewis [23]. It is preprocessed in a bag-of-words
representation.

Fig. 2. Example of a learning curve

III. CHALLENGE PROTOCOL

The challenge protocol was inspired by previous com-
petitions we organized [24] and was designed to ensure
fairness of the evaluation and stimulate participation. We
provided guidance to the participants with detailed answers to
Frequently Asked Questions (FAQ)10 and we posted a short

7http://www.cs.toronto.edu/˜kriz/cifar.html
8http://groups.csail.mit.edu/vision/TinyImages/
9http://archive.ics.uci.edu/ml/datasets/Covertype
10http://www.causality.inf.ethz.ch/

unsupervised-learning.php?page=FAQ

video tutorial on transfer learning.11 The rules can be found
on the website of the challenge.12 Briefly:

Development: From the outset of the challenge, all un-
labeled development and evaluation data were provided to
the participants. All data were preprocessed in a feature
representation, such that the patterns were not easily rec-
ognizable by humans, making it difficult to label data using
human experts. The labels of the supervised learning tasks
used for evaluation remained unknown to the participants
in both phases (and will never be disclosed so the platform
can remain in use for benchmark purpose). The “transfer
learning” labels were provided mid-way into the challenge.
During development there was no limitation on the number of
submissions on the validation set, except a maximum number
of submission per day, which we enforced only in the last
few days of each phase. The participants received on-line
feedback on the quality of their representation (or kernel)
with the metrics described in the next section.

Submission format: Given a data matrix of samples
represented as feature vectors (m samples in rows and n
features in columns), the objective of the participants was
to produce another data matrix of dimension (m, n′) (the
transformed representation of n′ new features) or a kernel
matrix between samples of dimension (m, m). The objective
of the participant was that the transformed representations
(or kernel matrices) would lead to good performance on
the supervised learning evaluation tasks provided by the
organizers.

Final evaluation: To participate in the final evaluation the
participants had to (i) register as mutually exclusive teams;
(ii) make one “final” complete submission of a feature based
representation (or kernel matrix) for the final evaluation
data for all five datasets of the challenge, (iii) submit the
answers to a questionnaire on their method (method fact-
sheet) and (iv) compete either in one of the two phases only
or in both phases (it was not necessary to compete in both
phases to earn prizes). For each phase, the team performances
were ranked for each individual dataset and the winner was
determined by the best average rank over all datasets.

Baseline results: Results using baseline methods were
provided on the website of the challenge by the organizing
team.

IV. EVALUATION METRICS

The data representations were assessed automatically by
the evaluation software on the website of the challenge. The
evaluation software and sample code were provided to the
participants.

Notations: The goal of supervised learning is to predict
an outcome y given a number of predictor variables x =
[x1, x2, ...xn], also called features, attributes, or factors. Dur-
ing training, the learning machine is provided with example
pairs {x, y} (the training examples) with which to adjust its
parameters. After training, the learning machine is evaluated

11http://www.youtube.com/watch?v=9ChVn3xVNDI
12http://clopinet.com/ul



on new example pairs (the test examples) to estimate its
generalization performance. In what follows, we call X a
data matrix and use context to clarify the data subset to
which it refers. Machine learning practitioners seldom use
raw data to develop their systems. The original data matrix of
dimension (m,n) may be transformed into a new matrix X
of dimension (m,n′), whose columns represent transformed
features. In the present challenge, we ask the participants
to submit such transformed data matrices. The organizers
then score the submitted representations using supervised
learning tasks unknown to the participants. The competitors
may either submit a (m,n′) transformed data matrix X of m
examples and n′ features, or a (m,m) positive semidefinite
kernel matrix K, which is an inner product between examples
in some feature-space. The evaluation platform detects if the
submitted matrix is a kernel matrix and switches to the kernel
version of the algorithm. Hence, submitting K = XX ′ yields
the same result as submitting X . This can be useful to reduce
the amount of data transmitted when submitting results.
The participants who are using dimensionality expansion
techniques, leading to feature representations for which n′ �
n, may prefer submitting XX ′ if it its compressed archive to
be transmitted is smaller than that X , while the participants
using dimensionality reduction techniques might be better
off submitting X directly. We also allowed the participants
to explore metric learning (kernel learning) as an alternative
to data representation learning and submit any kernel matrix.

Scoring metrics: For each evaluation set (validation set
or final evaluation set) the organizers defined several binary
classification tasks unknown to the participants. The platform
used the data representations provided by the participants to
train a linear classifier to solve these tasks. To that end,
a form of cross-validation was performed by partitioning
randomly the evaluation data (validation set or final eval-
uation set) multiple times into a training and a test set, and
averaging performances.13 The number of training examples
was varied and the AUC was plotted against the number of
training examples in a log scale (to emphasize the results
on small numbers of training examples). The area under
the learning curve (ALC) was used as a scoring metric to
assess the results. The participants were ranked by ALC for
each individual dataset. The participants having submitted a
complete experiment (i.e., reporting results on all 5 datasets
of the challenge) could enter the final ranking. The winner
was determined by the best average rank over all datasets for
the results on a complete experiment or their choice.

Global Score: We measured prediction performance using
the ALC. A learning curve plots the AUC (see the definition
below) as a function of the number of training examples.

We consider two baseline learning curves:
- The ideal learning curve, obtained when perfect pre-

dictions are made (AUC=1). It goes up vertically then

13The parameters of the linear classifier are adjusted using the training
set. Then, predictions are made on test data using the trained model. The
Area Under the ROC curve (AUC) is computed to assess the performance of
the linear classifier. The results are averaged over all tasks and over several
random training/test partitions.

follows AUC=1 horizontally. It has the maximum area
“Amax”.

- The “random” learning curve, obtained by making ran-
dom predictions (expected value of AUC: 0.5). It fol-
lows a straight horizontal line. We call its area ”Arand”.

To obtain our ranking score, we normalize the ALC as
follows:

globalscore = (ALC −Arand)/(Amax−Arand)

We interpolate linearly between points. The global score
depends on how we scale the x-axis and the number of points.
We used a log2 scaling and plotted the curve from m = 1 to
m = 26 training examples. We show in Figure 2 an example
learning curve for the toy problem ULE, obtained using the
sample code.

Classifier: We used a linear discriminant classifier to
evaluate the quality of the data representations. Denoting by
w = [w1, w2, . . . , wn] the parameter vector of the model,
classification is performed using the discriminant function

f(x) = w · x . (1)

If a threshold θ is set, patterns having a discriminant func-
tion value exceeding θ are classified in the positive class.
Otherwise they are classified in the negative class.

The weights wi are computed as the difference between the
average of feature xi for the examples of the positive class
and the average of feature xi for the examples of the negative
class. In other words, if we call X the training data matrix
of dimensions (m,n), m being the number of patterns and n
the number of features, and Y the target vector of weighted
binary target values (1/m+) and −(1/m−), where m+ and
m− are the number of examples of the positive and negative
classes respectively, we compute the weight w of the linear
discriminant as:

w = X ′Y . (2)

If a participant would submit XX ′ instead of X or any
positive semi-definite matrix, the evaluation code recognized
that it was a symmetric matrix with eigenvalues positive or
zero. The linear discriminant would then be computed as
follows:

f(x) =
∑

k

αkxk · x , (3)

where xk are the training examples, αk = 1/m+ for the
elements of the positive class, αk = −1/m− for the elements
of the negative class. Notice that the weight vector w of
Equation 2, where Y is the “balanced” target vector with
values 1/m+ and −1/m−, can be written as:

w =
∑

k

αkxk .

Hence, the dual form of the discriminant function of Equa-
tion 3 is equivalent to the primal form of Equation 1.
Therefore, the result is the same regardless of whether one
submits X or XX ′.

Area under the ROC Curve: The organizers evaluated
classification performance with the area under the ROC



curve (AUC). The AUC is the area under the curve plotting
sensitivity vs. (1− specificity) when the threshold θ to which
f(x) is compared is varied (or equivalently the area under the
curve plotting sensitivity vs. specificity). We define “sensi-
tivity” as the error rate of the positive class and “specificity”
as the error rate of the negative class. The AUC is a standard
metric for classification tasks.

The participants were judged on the normalized ALC
(global score), but online feedback was provided on both
AUC and ALC.

V. RESULTS

Oftentimes challenges end up being disappointing because
their results are either negative or not statistically signifi-
cant. In this challenge, we are pleased that the answer to
our questions are positive and we believe that the results
are significant because we used 5 datasets from different
domains, we received a large number of submissions, and the
top ranking participants used successfully the same method
on all the datasets. The central questions investigated were:
• Does unsupervised learning help compared to simple

normalizations of no preprocessing? [Answer: YES]
• Does cross-task transfer learning help compared to

unsupervised learning? [Answer: YES]
• Are Deep Learning methods competitive in this arena?

[Answer: YES]
Participation. The challenge attracted 76 participants.

There was more participation in the first phase than in the
second phase: In the first phase, 6933 jobs were submitted,
including 41 complete final entries, while, in the second
phase, 1141 jobs were submitted including 14 complete final
entries. There were in the end 16 ranked teams in the first
phase and 8 ranked teams in the second phase. Not all teams
decided to enter the final ranking, despite the option to
preserve their anonymity. The lower participation in phase
2 may be partially explained by the competition of other
popular challenges taking place in the same time period.
But this may also be due to the fact that “unsupervised
learning” is a more mature topic than “transfer learning”,
making it easier for researchers to contribute. However, we
are pleased that strong teams participated in both phases and
made contributions with advanced techniques.

Analysis of the results tables. The results of the top
ranking teams are shown in Table II. The complete result
tables are available online.14 In support of the significance

14Result tables: http://www.causality.inf.ethz.ch/
unsupervised-learning.php?page=results. In phase 1, the
organizers detected that the team 1055A submitted by error their results on
the validation set instead of those on the final evaluation set for the dataset
SYLVESTER. The team was allowed to re-submit their results on that
dataset and those are shown in the table. Without this correction, the 1055A
team ranks 3rd and this is the official ranking (with the correction they rank
2nd ex aequo with tkgw). In phase 2, due to an accidental release of the
results on the final evaluation set on the scheduled deadline, the planned
grace period was canceled. However, the participants were permitted to
make one last submission. The results reported in this paper are those of the
official ranking. The results of the additional final submission are shown
on the referenced webpage. The ranking of the top ranked participants
remained unchanged.

of the results of the challenge, the top ranking participants
performed consistently well on all the datasets.

We show in Figure 3 the distribution of the results (on
final evaluation data) in the two phases as a box plot. On
each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend
to the most extreme datapoints the algorithm considers to be
not outliers, and the outliers are plotted individually. We use
the red color for the results of phase 1 and the blue color
for the results of phase 2. The initial letter of the dataset and
the phase number are indicated on the horizontal axis.

The distribution of the results reveals that there are im-
portant differences difficulties across datasets. AVICENNA
was very hard, HARRY and TERRY were the easiest tasks
(but there is a very wide range of results) and RITA and
SYLVESTER were of medium difficulty. The tasks also
differed in how much transfer learning could help. We used
the results of phase 1 (unsupervised learning) as a baseline
for phase 2 (transfer learning). For HARRY, RITA and
SYLVESTER, both the median and the best results are better
in phase 2. For AVICENNA, the best result is a little better
in phase 2, but the median is worse. For TERRY, it is the
opposite. Overall, we conclude that transfer learning has a
potential for improving preprocessing since whether we use
the median or the best result, in 4/5 cases the results of phase
2 are better than those of phase 1.

It is also important to assess whether unsupervised learn-
ing helps compared to classical normalizations or no pre-
processing at all. We ran a couple of algorithms for com-
parison (Table II, bottom).15 Using unsupervised learning,
the participants outperformed the organizers on 4/5 datasets
(for HARRY, the normalized representation achieved the best
results in phase 1).

Finally, we examined the correlation between validation
set and final evaluation set performances. After removing a
few outliers (probably due to submission errors) we obtained
a correlation coefficient of 0.88 in the first phase and 0.89
in the second phase. Most participants simply used the
validation set performance as a model selection criterion.
This turned out to be an effective strategy.

Survey of the participants. We surveyed the participants
to determine what algorithms, software and hardware was
used in the challenge and the amount of effort that was put
into solving the tasks. Sixteen teams turned in fact sheets.
We review briefly our findings.

In this challenge, effort paid off. The top ranking partic-
ipants spent several man-weeks of work compared to just a
few days for the lower ranking participants. Most reported
having had enough development time. Most people used
the same method on all the datasets (72%), which is great
news because it demonstrates that systematic methods were
developed.

15200 dimensions were used for PCA except for TERRY, for which 4096
dimensions were used and data were subsambled to compute the covariance
matrix.



Fig. 3. Distribution of the results in the two phases of final evaluation data

For preprocessing, most participants just normalized the
columns and/or the lines of the data matrix. Feature con-
struction, non-linear transformations, and orthogonalization
were more prevalent among the top ranking participants.
In most cases, no feature selection was used unless it was
embedded in the learning algorithm. Interestingly, several
top ranking participants of the second phase used wrapper
methods of feature selection, making thus use of the available
transfer labels. Linear transformations and clustering were
the most popular methods of unsupervised learning (83%
of the participants used either one of these two methods).
Even among the top ranking participants, users of non-linear
methods and Deep Learning methods were the exception.
In the second phase, a significant fraction (25%) of the
participants used the transfer labels only for model selection.
This trend is even more pronounced among the top ranking
participant: 4/5 used this strategy. Hence, the transfer labels
basically served to validate unsupervised learning strategies.

The participants used the data is various ways for training
and model selection. Not all of them used all the data for
training (development set, validation set, and final evaluation
set). Among the top ranking participants of phase 1, all used
the (unlabeled) validation set for training, but only half used
either the (unlabeled) development set or the (unlabeled)
final evaluation set. The use of the development set for
training went up to 80% among the top ranking participants
in phase 2 (we remind that, in phase 2, the development set
was partially labeled). For model selection, most participants
relied, at least to some extent, on the performances on
the validation set (available from the leaderboard). Some
participants used cross-validation on the development test
set during the second phase, to make use of the “transfer
labels”. A few participants used ensemble methods, either
by concatenating representations or averaging kernels.

Surprisingly, not all the participants made the effort of
adapting their methods to the type of classifier used for
evaluation (a linear classifier with Hebbian-style learning).
Very few made the effort of orthogonalizing features, which
we thought might help because Hebbian learning makes the
implicit assumption of feature orthogonality/independence.
However, most top ranking participants did make adaptations
of their algorithms to the classifier used for evaluation.

With respect to hardware and software implementation, all
the participants used some form of parallelism to perform
their computer experiments. More than half used parallel
processors. For example, the LISA team used clusters (to par-
allelize hyper-parameter exploration) and GPUs to speed-up
computation. The size of the datasets imposed some memory
requirements on the hardware. Live memory requirements
were large, but not exceptional. Two thirds of the participants
reported needing between 2 and 8 Gbytes of memory. Also
two-thirds of the participants reported using Matlab. Hence,
the size of the datasets did not prevent the participant from
using rather memory consuming and relatively slow software
environments like Matlab (83% used Matlab at least to some
extent). A variety of operating systems were used (33%
MacOS, 61% Windows, 61% Linux). For the most part, the
software used for the challenge is freeware or shareware
(either produced by the participants or third-party code);
only 1/4 of the participants reported using commercial or
proprietary code.

Winning methods. A special volume of JMLR W&CP
will be published gathering the papers of the best partici-
pants. Here we give a brief summary of methods used, based
on the fact sheets.16 In support of the significance of the
results of the challenge, the top ranking teams in both phases
used consistently the same principled methods on all datasets,
and performed well on all of them.

In the first phase, the winner (team name: AIO) used an
algorithm to train kernels [26]. Using validation data, he
incrementally improved his kernel, each time checking the
performance on the leaderboard. He developed a systematic
method of sequential kernel transformations and recorded
which sequence ended up giving the best performance on
validation data. Then, he applied the same sequence to the
final evaluation data. The method can be interpreted as a
greedy search for hyperparameters of a compound kernel.

The team LISA, ranking first in the second phase and
fourth in the first phase, based their solution on Deep
Learning techniques, in particular for unsupervised learning
of representations. Their methods follow the techniques de-
scribed in [4]. Those exploit as building blocks unsupervised
learning of single-layer models, such as Restricted Boltz-
mann Machines, to construct deeper models such as Deep
Belief Networks.

The team 1055A, ranking second in the first phase and
third in the second phase used classical unsupervised learning
methods: Principal component analysis (PCA) and k-means

16http://www.causality.inf.ethz.ch/
unsupervised-learning.php?page=results



TABLE II
NORMALIZED ALC VALUES OF THE TOP RANKING PARTICIPANTS AND REFERENCE METHODS

The ALC values are computed for 1 to 26 training examples. We show in boldface the best result for both phases.
The numbers in parentheses are the ranks for the individual datasets in each phase.

Phase 1 - Unsupervised Learning
Rank Team Experiment AVICENNA HARRY RITA SYLVESTER TERRY

1 AIO AIO 0.2183 (1) 0.7043 (6) 0.4951 (1) 0.4569 (6) 0.8465 (1)
2 1055A exp1 0.1906 (6) 0.7357 (3) 0.4782 (5) 0.5828 (1) 0.8437 (2)
3 Airbus A3XX 0.2174 (2) 0.7545 (2) 0.4724 (7) 0.4949 (4) 0.8390 (3)
4 LISA LISA 0.1960 (5) 0.8062 (1) 0.4731 (6) 0.4763 (5) 0.7959 (6)

Phase 2 - Transfer Learning
Rank Team Experiment AVICENNA HARRY RITA SYLVESTER TERRY

1 LISA agartha 0.2273 (1) 0.8619 (1) 0.5029 (1) 0.5650 (3) 0.8160 (2)
2 tkgw crush 0.1973 (2) 0.7533 (2) 0.4095 (4) 0.5933 (1) 0.8118 (3)
3 1055A phase2exp1 0.1511 (4) 0.7381 (3) 0.4992 (2) 0.5873 (2) 0.8437 (1)
4 FAST teaf 0.1909 (3) 0.3580 (4) 0.4275 (3) 0.3379 (5) 0.6485 (4)

Reference results
Rank Team Experiment AVICENNA HARRY RITA SYLVESTER TERRY

Reference raw data 0.1034 0.6264 0.2504 0.2167 0.6969
Reference normalized 0.1117 0.8234 0.1947 0.2644 0.7162
Reference PCA 0.1193 0.5109 0.1929 0.2258 0.6269
Reference kmeans 0.0856 0.2230 0.2417 0.1670 0.6602

clustering. They first computed the principal components on
validation dataset and used the on-line feedback to determine
the first n principal components that gave the best global
score. Clustering was then performed in the PCA represen-
tation and repeated 100 times with different class seeds. The
number of clusters was optimized with the feedback from
the validation dataset. They submitted data representations
in a binary encoding of cluster membership.

The team tkgw, ranking second in the second phase, used
a method called “Random Forest Proximity”, which recur-
sively searches for principal directions when going down a
decision tree (halting at a depth of 12). Random Forests [27]
are ensembles of decision trees built by resampling variables
and training examples. The method allowed the authors to
create a large number of features, from which they generated
a similarity measure. The similarity measure was then turned
into a semi-definite positive kernel matrix with a suitable
normalization. See the fact sheet for details.

The team Airbus, ranking third in the first phase, tried
various preprocessing methods and selected the best one one
using the validation set. On AVICENNA they ended up using
PCA with 90% of variance, and then a RBF kernel. For
HARRY and TERRY, they rotated the representation then
used a linear kernel. For RITA, they ran k-means to get some
clusters then Maximum Variance Unfolding (MVU) on each
of them to select features, and then a denoising algorithm.
For SYLVESTER, they used whitening, taking 90% of the
variance.

VI. CONCLUSIONS

The classical machine learning assumption of i.i.d. (inde-
pendently and identically distributed) instances is constantly
challenged in real applications. Data available for training
are not always similar to data the system will be exposed to
when it is deployed. Transfer learning exploits data from
a “source task” whose target space or input domain is
different from the “target task”. We organized a challenge
in unsupervised and cross-task transfer learning. The results
of the first phase on unsupervised transfer learning confirm
results reported in the literature that unsupervised learning
can be beneficial for preprocessing. The benefits of transfer
learning in the “cross-task transfer learning” setting studied
in this challenge are mainly derived from an improvement
in model selection of unsupervised learning preprocessing
techniques. New promising methods have been proposed.

One of the main findings of this challenge is the power
of unsupervised learning as a preprocessing. Regardless of
methods used, results that are significantly better than those
on the raw data were obtained in the challenge with unsu-
pervised methods. The skepticism around the effectiveness
of unsupervised learning is justified when no labeled data
are available for validation. However, unsupervised learning
can be the object of model selection using a supervised task,
similarly to preprocessing, feature selection, and hyperpa-
rameter selection. There seems to be a particularly good fit
between unsupervised learning and transfer learning, which
can be married in what we refer to as “unsupervised transfer
learning”. The method consists in preprocessing data with
unsupervised methods in several ways and choosing the best



approach by training and testing a classifier on a source
task (auxiliary task), distinct from the target task. This is
a variant of the simpler model selection strategy generally
used, which consists in using some validation data drawn
from the same distribution at the target task data. In this
challenge, we demonstrated that the validation data needs
not to be drawn from the same distribution, it suffices that
the source task used bears some resemblance with the target
task. The importance of the degree of resemblance of the
two tasks remains to be determined.

This method was illustrated in the challenge in both
phases. In phase 1, the source task was the classification
of the validation set data. The participants used the feedback
available from the leaderboard on the validation set to choose
their method. There was a danger of overfitting by trying too
many methods and relying too heavily on the performance
on the validation set. One team for instance overfitted in
phase 1, ranking 1st on the validation set, but only 4th on
the final evaluation set. Possibly, criteria involving both the
reconstruction error and the classification accuracy on the
validation tasks may be more effective for model selection.
This should be the object of further research. In phase 2, the
participants had available labels from a source task (distinct
from the classification tasks of the validation set and the final
evaluation set). Therefore, they had the opportunity to use
such labels to devise transfer learning strategies. The most
effective strategy seems to have been to use those labels for
model selection again.
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