
An Input Variable Importance Definition
based on Empirical Data Probability

and Its Use in Variable Selection
Vincent Lemaire and Fabrice Clérot

France Telecom Research and Development
FTR&D/DTL/TIC

2 avenue Pierre Marzin
22307 Lannion Cedex - France

E-mail: {vincent.lemaire,fabrice.clerot}@francetelecom.com

Abstract— Variable and feature selection have become the focus
of much research in areas of application for which datasets with
tens or hundreds of thousands of variables are available. We
propose a new method to score subsets of variables according
to their usefulness for the performance of a given model. This
method is applicable on every kind of model and on classification
or regression task. We assess the efficiency of the method with
our results on the NIPS 2003 feature selection challenge and with
an example of a real application.

I. INTRODUCTION

Up to 1997, when a special issue on relevance including
several papers on variable and feature selection was published
[2], few domains explored more than 40 features. The situation
has changed considerably in the past few years, notably in the
field of data-mining with the availability of ever more powerful
data warehousing environments.

A recent special issue of JMLR [7] gives a large overview of
techniques devoted to variable selection and an introduction to
variable and feature selection can be found in this special issue
[6]. A challenge on feature selection has been organized during
the NIPS 2003 conference to share techniques and methods on
databases with up to 100000 features.

The objective of variable selection is three-fold: improve
the prediction performance of the predictors, provide faster
and more cost-effective predictors, and allow a better under-
standing of the underlying process that generated the data.

Among techniques devoted to variable selection we find
filter methods, which select variables by ranking them with
correlation coefficients, and subset selection methods, which
assess subsets of variables according to their usefulness to a
given model.

Wrapper methods [8] use the elaborated model as a black
box to score subsets of variables according to their usefulness
for the modeling task. In practice, one needs to define: (i) how
to search the space of all possible variable subsets; (ii) how
to assess the prediction performance of a model to guide the
search and halt it; (iii) which predictor to use.

We propose a new method to perform the second point
above and to score subsets of variables according to their

predictive power for the modeling task. It relies on a definition
of the variable importance as measured from the variation
of the predictive performance of the model (classification or
regression). The method is motivated and described in section
II. Having presented the NIPS feature selection challenge in
III, we compare in section IV the performance of the proposed
method with other techniques on this challenge. Section V
shows an example of application in a practical context and we
conclude in VI.

II. ANALYSIS OF AN INPUT VARIABLE INFLUENCE

A. Motivation and previous works

Our motivation is to measure variable importance given a
predictive model. The model is considered a perfect black box
and the method has to be usable on a very large variety of
models for classification (whatever the number of classes) or
regression problems.

When a predictive model has been built, a question often
raised in practice is ‘What would happen to this individual if
this variable was set to a different value ?’. A simple way to
answer this question is to plot the variation of the output of
this predictive model for this individual versus the variation
of the variable [10], [9], [1].

For non-linear models the variation of the output can be
non-monotonous. Hence, the influence of an input variable
cannot be evaluated by a local measurement. The measurement
of the difference of the output of a model with respect to
the variation of an input variable provides a more global
information and can be applied to discrete variables. However,
the choice of the variation range should depend on the variable:
too small a value has the same drawback as the partial
derivatives (local information and not well suited for discrete
variables), too large a value can be misleading if the function
(the model) with respect to an input V is non-monotonous, or
periodic.

A characteristic of the ‘what if?’ simulation is that it relies
on the generalization capabilities of the model since the output
of the model is calculated with values of the variables which
can be away from the training set; for instance, a discrete

variable can be treated as a continuous one. The ‘what if?’ sim-
ulation is extended to define causal importance and saliency
measurement by Féraud et al. in [5]. Their definition however
does not take into account the true interval of variation of the
input variables. They propose to use a prior on the possible
values of the input variables. The knowledge needed to define
this prior depends on the specificities of the input variable
(discrete, positive, bounded, etc). Such individual knowledge
is clearly difficult and costly to obtain for databases with a
large number of variables. A more automatic way than this
‘prior’ approach is needed.

A first step in this direction is given by Breiman in [3]
(paper updated for the version 3.0 of the random forest) where
he proposes a method which relies on the distribution of
probability of the variable studied. Each example is randomly
perturbed by randomly drawing another value of the studied
variable among the values spanned by this variable across
all examples. The performance of the perturbed set are then
compared to the ‘intact’ set. Ranking variable performance
differences allows to rank variable importance. This method
allows to automatically determine the possible values of a
variable from its probability distribution, even if perturbing
every example only once does not explore the influence of the
full probability distribution of the variable. Moreover, although
[3] seems to restrict the method to random forests, it can
obviously be extended to other models.

The method described in this article combines the definition
of the ‘variable importance’ as given in Féraud et al. [5] with
an extension of Breiman’s idea [3]. This new definition of
variable importance both takes into account the probability
distribution of the studied variable and the probability distri-
bution of the examples.

B. Definition of the variable importance

The importance of an input variable is a function of ex-
amples I (see Figure 1) probability distribution and of the
probability distribution of the considered variable (Vj).

Let us define:

• Vj the variable for which we look for the importance;
• Vij the realization of the variable Vj for the example i;
• Im the example m a vector with n components;
• f the predictive model;
• PVj

(u) the probability distribution of the variable Vj ;
• PI(ν) the probability distribution of examples I .

and

fj(a; b) = fj(a1, ..., an; b) = f(a1, ..., aj−1, b, aj+1, ..., an)
(1)

where ap is the pth component of the vector a.
The importance of the variable Vj (see Figure 1) is the av-

erage of the measured variation of the predictive model output
when examples are perturbed according to the probability dis-
tribution of the variable Vj . The perturbed output of the model
f , for an example Ii is the model output for this example but
having exchanged the jth component of this example with the
jth component of another example, k. The measured variation,

������
������
������
������

��
��
��
��

������
������
������
���

��
��
��
�

��
��
��
��

��
��
��
��

��
��
��
�

��
��
��
�

	�	�	
�
�

����������

f

f

+

−

fj (Ii; Vij)

fj (Ii; Vkj)
Vj

Vj

Ii

IkIi

fj(Ii; Vij)− fj(Ii − Vkj)

Fig. 1. Graphical representation of the random draw

for the example Ii is then the difference between the ‘true
output’ fj(Ii;Vij) and the ‘perturbed output’ fj(Ii;Vkj) of the
model. The importance of the variable Vj is then the average
of |fj(Ii;Vij)− fj(Ii;Vkj)| on both the examples probability
distribution and the probability distribution of the variable Vj .
The importance of the variable Vj for the model f is then:

S(Vj |f) =

∫∫
PVj

(u)duPI(v)dv |fj (Ii;Vij) − fj (Ii;Vkj)|

(2)

C. Computation

Approximating the distributions by the empirical distribu-
tions, the computation of the average of S(Vj |f) would require
to use all the possible values of the variable Vj for all examples
available. For N examples and therefore N possible values of
Vj the computation time scales as N 2 and become very long
for large databases.

There are, at least, two faster heuristics to compute S(Vj |f):

1) We draw simultaneously Ii and Vkj and compute one
realization of |fj(Ii, Vij) − fj(Ii, Vkj)|. The measure of the
average of S(Vj |f) is then realized by means of a Kalman
filter until convergence (see [11] to initialize and set the
Kalman filter parameters).

2) S(Vj |f) can be written:

S(Vj |f) =

∫
PI(v)dv

∫
PVj

(u)du |fj (Ii;Vij) − fj (Ii;Vkj)|

(3)
Approximating the probability distribution of the data by

the empirical distribution of the examples:

S(Vj |f) =
1

N

∑
i∈N

E {|fj (Ii;Vij) − fj (Ii;Vkj)|} (4)

As the variable probability distribution can be approximated
using representative examples (P) of an ordered statistic:

S(Vj |f) =
1

N

∑
i∈N

∑
p∈P

|fj (Ii;Vij) − fj (Ii; vp)| Prob(vp)

(5)

The computation can also be stopped with a Kalman filter.
This method is especially useful when Vj takes only discrete
values since the inner sum is exact and not an approximation.

D. Application to feature subset selection

The wrapper methodology [8] offers a simple and powerful
way to address the problem of variable selection, regardless the
chosen learning machine. The learning machine is considered
a perfect black box and the method lends itself to off-the-
shelf machine learning software packages. Exhaustive search
can only be performed if the number of variables is small and
heuristics are otherwise necessary. Among these, backward
elimination and ‘driven’ forward selection which can both rely
on the variable importance described above.

In backward elimination one starts with the set of all varia-
bles and progressively eliminates the least important variable.
The model is re-trained after every selection step. In forward
selection, as in [3], at a first step we train a model with
all variables then we rank the variables using the method
described in this paper and in a second step we train models
where variables are progressively incorporated into larger and
larger subsets according with their ranks.

Comparison between both methods will be discussed else-
where. Hereafter we restrict the discussion to backward elim-
ination. We note here that both methods have the appealing
property of depending on one parameter only, the degradation
of the performance of the model trained with the subset
relatively to the best possible performance reached.

To speed up the backward elimination another parameter is
added. At each step of the backward elimination we remove all
variables with an importance smaller than a very low threshold
(10−6). With this implementation the backward elimination
method has only two simple parameters, a performance thresh-
old to define the selected subset and an importance threshold
to discard variables with ‘no’ importance.

III. FEATURE SELECTION CHALLENGE

A. Introduction

Asserting the performance of data-mining methods is always
a difficult task. Standard ‘benchmark’ problems such as the
databases of the UCI repository are not well-suited to investi-
gate the properties of variable selection techniques since most
of the databases include only a small number of variables.

The purpose of the NIPS 2003 workshop on feature extrac-
tion was to bring together researchers of various application
domains to share techniques and methods. Organizers of the
challenge1 formatted a number of datasets for the purpose
of benchmarking feature selection algorithms in a controlled
manner. The data sets were chosen to span a wide variety
of domains. They chose data sets that had sufficiently many
examples to create a large enough test set to obtain statisti-
cally significant results. The input variables are continuous or
binary, sparse or dense. All problems however are two-class

1All the informations about the challenge, the datasets, the results can be
found on: www.nipsfsc.ecs.soton.ac.uk

classification problems. The similarity of the tasks will allow
participants to enter results on all data sets to test the genericity
of the algorithms.

Each dataset was split in 3 sets: training, validation and
test set. Only the training labels were provided. During the
development period, challengers could send classification re-
sults (on the five datasets or on only one) and received in
return validation set error rate. At any time the participants
could submit their final classification results. A submission
was considered final if the author(s) made a simultaneous
submission on the five data sets before the deadline. A very
large number of submissions were made on each dataset (840
for the most tried) but there were only 136 final submissions
and 56 final valid submissions (organizers kept the five better
results of every challenger).

B. Datasets

We describe here very briefly the five datasets. The number
of examples for each train, valid and test set are given in
Table I. Manipulations of the datasets described below were
performed by the organizers before the challenge.

• The task of ARCENE is to distinguish cancer versus nor-
mal patterns from mass-spectrometric data (continuous
input variables). For data compression reasons organiz-
ers of the challenge thresholded the values. Before the
benchmark linear SVM trained on all features had 15 %
test error rate.

• The task of GISETTE is to discriminate between con-
fusable handwritten digits: the four and the nine (sparse
continuous input variables, many methods have been tried
on this dataset, see yann.lecun.com/exdb/mnist/). The
dataset was normalized so that the pixel values would
be in the range [0,1] then values below 0.5 have been
thresholded by the organizer to increase data sparsity.
Before the benchmark linear SVM trained on all features
had 3.5 % test error rate.

• The task of DEXTER is to filter texts about ‘corporate
acquisitions’ (sparse continuous input variables, see kdd.

ics.uci.edu/databases/reuters21578/). The order of
the features and the order pattern were randomized.
Before the benchmark linear SVM trained on all features
had 5.8 % test error rate.

• The task of DOROTHEA is to predict which compounds
bind to Thrombin (sparse binary input variables). Before
the benchmark ‘lambda method’ trained on all features
had 21 % test error rate (no linear SVM tried).

• The task of MADELON is to classify artificial data
(continuous input variables) with only 5 useful features.
Before the benchmark organizers of the challenge used a
K-nearest method, with K = 3, with the 5 useful features
only which gives a 10 % error rate.

Probes refer to ‘random features’ distributed similarly to
the real features and added to every dataset. This allows
organizers to rank algorithms according to their ability to filter
out irrelevant features.

TABLE I

DATA STATISTICS

Dataset Fraction Number of Training Validation Test

of probes Features set set set

Arcene 30 % 10000 100 100 700

Gisette 50 % 5000 6000 1000 6500

Dexter 50 % 20000 300 300 2000

Dorothea 50 % 100000 800 350 800

Madelon 96 % 500 2000 600 1800

IV. RESULTS AND COMPARISON OF THE NIPS 2003
CHALLENGE

A. Test conditions on the proposed method

As we wished to investigated the performance of our
variable importance measurement, we chose to use a single
learning machine for all datasets (no bagging, no Ada-boost,
no other bootstrap method): a MLP neural network with
1 hidden layer, tangent hyperbolic activation function and
stochastic back-propagation of the squared error as training
algorithm. We added a regularization term active only on
directions in weight space which are orthogonal to the training
update [4].

For each dataset we split the training set in two sets: a train-
ing (70 %) and a validation set (30 %); the validation set of
the challenge is then used as a test set. We made a single final
submission before December first and we decided to keep this
submission after December first (the valid submissions made
before December first received the labels of the validation set,
allowing a new attempt which was to be sent before December
8th). Therefore we compare below the results obtained with the
proposed method with the valid results sent before December
first.

The preprocessing used is only a zero-mean, unit-variance
standardization. The strategy used to constitute the selected
variable subset is the standard backward elimination. The
subset of variables was chosen as the smallest subset allowing
a performance greater than 95 % of the best performance
reached during the selection process.

B. Comparison with others results

1) Comparison with baseline results: Our results compared
to the baseline results, linear SVM and ‘lambda method’
(features selection by correlation with the target followed
by Golub’s classifier; see clopinet.com/isabelle/Projects/

NIPS2003/Slides/NIPS2003-Datasets.pdf) are presented in
Table II.

The results presented in Table II show that all the results
obtained are included between the results of the lambda
method and the linear SVM. The Fraction Of Features (FoF)
is defined as the ratio of the number of used variables by the
classifier to the total number of variables in the dataset and
the Balanced Error Rate (BER) as the average of the error rate

TABLE II

TEST BALANCED ERROR RATE

Dataset 1 2 3 4 5 6

Arcene 30 1.5 - 15 30 29.65

Dexter 50 0.61 - 5.8 20 9.70

Dorothea 50 0.07 - - 21 22.24

Madelon 96 1.6 10 - 41 16.38

Gisette 50 1.8 - 3.5 30 3.48

1: Fraction of probes of the dataset (%)
2: Fraction of features used (%)
3: K-nearest BER (%)
4: Linear SVM’s BER (%)
5: Lambda method’s BER (%)
6: Neural network BER (%),with the best subset of variables

on positive class examples and the error rate on negative class
examples.

Clearly restricting ourselves to a simple model with no
bootstrap techniques cannot allow us to reach very good BER,
particularly on databases as ARCENE where the number of
example is quite small.

2) Comparison with same model using all the variables:
Our results compared to the results of a neural network trained
with all the variables are presented in Table III.

TABLE III

TEST BALANCED ERROR RATE

Dataset 1 2 3

Arcene 1.5 20.2 29.65

Dexter 0.61 15.1 9.70

Dorothea 0.07 30 22.24

Madelon 1.6 31.5 16.38

Gisette 1.8 4.3 3.48

1: Fraction of features used (%)
2: Neural network BER (%), with all the variables
3: Neural network BER (%), with the best subset of variables

The performance of the model trained with the subset
relatively to the performance of the model trained with all
variables are improved on every dataset excepted ARCENE.
For this dataset it seems that the use of only 70 examples
for training with no bootstrap does not allow to have good
variable selection considering generalization performances.

An example of the BER obtained during the backward
elimination phase is presented on the Figure 2 for GISETTE.

The BER does not increase as we remove (backward elim-
ination) variables until a very small number of variables is
reached where the BER starts to be affected and increases
sharply. Note that during the first step of the backward
elimination we remove all variables with ‘no’ importance.
For GISETTE this first step removes 44 % of the variables
(there are 50 % of probes in GISETTE). At the end of the
backward elimination we keep 90 variables, that is 1.8 % of the
features, and we only have 5.56 % of probes, that is 5 ‘dummy’

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of used variables [5:5000]

Balanced Error Rate

Our Train Set
Our Validation Set

Fig. 2. Balanced Error Rate during the backward elimination for GISETTE

variables, among these 90 variables. This shows that for this
database, even with a single MLP, the variable selection task
has been well performed.

3) Comparison with all other valid submissions : The
organizers of the challenge rated the classification results only
with the BER. For methods having performance differences
that are not statistically significant, the method using the
smallest number of features win.

‘Variable selection’ is always somewhat ambiguous when
the result is judged from the BER only, specially when
different learning machines are used, since it is more a matter
of balance between BER and FoF rather than a matter of
BER only: to prefer a BER=0.1 using 50 % of features to
a BER=0.12 using 10 % of the features is mostly a matter
of application requirements. In some applications, one would
trade some accuracy for less features, as in the real-time
application we describe below for instance.

We first note that our results with a single MLP compare
quite favorably with results by Amir Reza (results named
‘SimpleNN’ on the web site challenge) also using a single
MLP and all features even if, as stated above, the use of a
single learning machine without bootstrap does not lead to
excellent BERs. However as can be seen below our BER
results are close to the average results. The point here is
just to stress that our model, although admittedly not the
most adapted for accuracy on some datasets, indeed reaches a
‘reasonable’ BER (see also point 2) below).

What we expect from a variable selection technique is to
adapt itself in such situation by removing as many features as
possible. Therefore, what we can expect from the combination
of our simple model and our selection technique is to keep a
BER reasonably close to the average while using significantly
less features on all datasets.

Below we use a representation of the results which allows
a comparison of the proposed method to other methods on
the five datasets. This representation has two axis (see Figure
3): the first axis of comparison is the ratio between the BER
of a submitted method and our BER (BER∗) and the second

axis is the ratio between our FoF (FoF∗) and the FoF of a
submitted method. For each dataset our results are placed in
the center of the figure. Each author(s) is represented with a
marker symbol. A marker is placed for each method of this
author(s) and for each dataset. This allows to compare the
results for each dataset. This simple representation allows to
define 4 classes of methods on every dataset: 1) a better BER
and a better FoF; 2) a better BER but a worse FoF; 3) a better
FoF but a worse BER; 4) a worse FoF and a worse BER. As
authors were able to send more than one submission, authors
may have more than five identical marker symbol.

−1.5 −1 −0.5 0 0.5 1 1.5
−8

−6

−4

−2

0

2

4

6

log2(BER/BER*)

lo
g2

(F
oF

*/
F

oF
)

Better BER
Worse FoF

Better BER
Better FoF

Worse BER
Better FoF

Worse BER
Worse FoF

Sepp Hochreiter
CBA Group
Amir Reza Saffari
Sang Keun Lee
Radford Neal
Thomas Navin Lal
Yi−Wei Chen
Mark J. Embrechts
Marc Boulle
Saharon Rosset − Ji Zhu
Vivian Ng − Leo Breiman

Fig. 3. Results on the test set for all the valid final submissions (56) labelled
by author(s).

The figure 3 shows results of methods which never used
100 % of the variables compared to the results obtained with
our method. This figure shows that compared to the proposed
method:

1) No method gave better results (better BER and better
FoF) on the five datasets.

2) No method obtained a significantly better BER (less than
0.8 BER∗ regardless of the FoF) on the five datasets.

3) Half of the authors have tried a method which gives a
worse BER and a worse FoF.

4) Only 4 authors proposed methods allowing to have a
better BER and less features on some datasets.

5) The proposed method, combined with backward elimi-
nation using only one neural network, selects very few
variables compared with the other methods.

The points above show that the proposed variable selection
technique exhibits the expected behavior by both keeping the
BER to a reasonable level (better than the BER with all
features, except for ARCENE as already discussed, close to
the average result of the challenge) and dramatically reducing
the number of features on all datasets.

V. APPLICATION TO FRAUD DETECTION

The case study is the on-line detection of the fraudulent
use of a post-paid phone card. Here the ‘fraud’ term includes

all cases which may lead to a fraudulent non-payment by the
caller. The purpose is to prevent non-payments by warning
the owners of phone card that the current use of their card
is unusual. The original database contains 15330 individuals
described with 368 inputs variables of various natures. The
database contains 97 % examples which belong to the class
‘not fraudulent’ and 3 % which belong to class ‘fraudulent’.

Using all variables in the modeling phase allows to obtain
good fraudulent/non fraudulent classification performances but
this model cannot be applied on-line because of computing
and data extraction time constraints. It is thus necessary to
reduce significantly the number of variables while keeping
good performances.

The BER on the test set versus the number of variables is
given in Figure 4. This figure shows that with the proposed
method one can obtain the same BER with 100 variables than
with 368 variables and a small degradation using 90 variables.
Accepting a degradation of the performance by 10 % allows
to retain only 40 variables.

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 50 100 150 200 250 300 350 400

Number of used variables

Test BER

Fig. 4. BER on the test set versus the number of variables.

The classification performances are given below in the form
of lift curves in Figure 5 using 40, 90 and all the variables.
Regarding the variable selection method, the performances
of the neural network trained with 90 variables shows a
marginal degradation of the performance as compared to the
neural network trained with all the 368 variables. The neural
network trained with 40 variables shows no degradation of
the performance for small segments of the population: the
selectivity is the same up to a lift ratio of 0.6 which is a
key issue for such systems where only small segments of the
population can be processed in real time.

These results show that, on this real application, it is pos-
sible to obtain excellent performances with the methodology
described in this paper. Moreover, it allows a much simpler
interpretation of the model as it only relies on much fewer
input variables but such business-oriented discussion is out of
the scope of this paper.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ud
 P

op
ul

at
io

n

Total Population

Lift of Fraudulent Behavior - Test Set

Optimal Answer
Uniform Answer

ANN using 40 variables
ANN using 90 variables

ANN using 368 variables

Fig. 5. Detection rate (%) of the fraudulent users obtained with different
number of variables (ANN: Artificial Neural Network), given as a lift curve.

VI. CONCLUSIONS

We presented a new measure which allows to estimate the
importance of each input variable of a model. This measure
has no adjustable parameter, is applicable on every kind of
model and for classification or regression task.

Experimental results on the NIPS 2003 feature selection
challenge show that using this measure coupled with backward
elimination allows to reduce considerably the number of input
variables with no degradation of the modeling accuracy. Ex-
perimental results on a real application show the effectiveness
of this approach.

REFERENCES

[1] W. G. Baxt and H. White. Bootstrapping confidence intervals for clinical
inputs variable effects in a network trained to identify the presence of
acute myocardial infraction. Neural Computation, 7:624–638, 1995.

[2] A. Blum and P. Langley. Selection of relevant features and examples
in machine learning. Artificial Intelligence, 97(1-2):245–271, December
1997.

[3] Leo Breiman. Random forest. Machine Learning, 45, 2001.
[4] Anthony N. Burkitt. Refined pruning techniques for feed-forward neural

networks. Complex System, 1992.
[5] Raphael Féraud and Fabrice Clérot. A methodology to explain neural

network classification. Neural Networks, 15:237–246, 2002.
[6] Isabelle Guyon and André Elisseef. An introduction to variable and

feature selection. JMLR, 3(Mar):1157–1182, 2003.
[7] JMLR, editor. JMLR Special Issue on Variable and Feature Selection,

volume 3(Mar). Journal of Machine Learning Research, 2003.
[8] R. Kohavi and G. John. Wrappers for feature subset selection. Artificial

Intelligence, 97(1-2), 1997.
[9] J. Moody. Prediction Risk and Architecture Selection for Neural

Networks. From Statistics to Neural Networks-Theory and Pattern
Recognition. Springer-Verlag, 1994.

[10] A. N. Réfénes, A. Zapranis, and J. Utans. Stock performance using
neural networks: A comparative study with regression models. Neural
Network, 7:375–388, 1994.

[11] Greg Welch and Gary Bishop. SCAAT: Incremental tracking with
incomplete information. In SIGGRAPH, Los Angeles, August 12-17
2001.

