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Abstract— Virtual Auditory Space (VAS) refers to the synthesis
and simulation of spatial hearing using earphones and/or a
speaker system. High-fidelity VAS requires the use of individ-
ualized head-related transfer functions (HRTFs) which describe
the acoustic filtering properties of the listener’s external audi-
tory periphery. HRTFs serve the increasingly dominant role of
implementation 3-D audio systems, which have been realized in
some commercial applications. However, the cost of a 3-D audio
system cannot be brought down because the efficiency of com-
putation, the size of memory, and the synthesis of unmeasured
HRTFs remain to be made better. Because HRTFs are unique
for each user depending on his morphology, the economically
realist synthesis of individualized HRTFs has to rely on some
measurements. This paper presents a way to reduce the cost of
a 3-D audio system using a statistical modeling which allows to
use only few measurements for each user.

I. INTRODUCTION

The technology of Virtual Auditory Space (VAS) offers a
flexible tool with a wide range of possibilities enabling, for
example, a highly realistic music listening environment over
headphones. The critical factor for realizing the sound spa-
tialisation is the individualized head-related transfer functions
(HRTFs). The ability to “directionalize” and “externalize”
sounds is a key feature of a 3-D audio system [9].

The outer ears, head, and torso lead to diffraction and
reflection on the sound wave entering an ear canal [16]. If the
operation of propagating a sound from a pinna to the eardrum
is measured as a set of HRTFs, then the perceived location of
the sound can be controlled by these transfer functions over
headphones [21].

It is well known that HRTFs vary significantly from person
to person. Dramatic perceptual distortions can occur when one
listens to sounds spatialized with non individualized HRTF
[19]. For cost reasons it is not possible to measure all the
HRTFs of an user. Therefore recent research has focused on
the so called “non-individualized HRTF” problem [10], [4].
The problem is to reconstruct simply and efficiently all the
HRTFs of a user with few measurements only. Our approach
to this problem relies on statistical learning techniques.

II. METHODOLOGY - ORGANIZATION OF THE PAPER

The goal of this study is to build a model which correctly
estimates the HRTFs of any user from only few measurements
taken on this user.

In this context, measurements can be the HRTFs themselves
and morphological measurements (head size, ears size...). The
state of art [15], [7] shows that morphological measurements
help to estimate the HRTFs of a user when added to the
measured HRTFs of this user. In this paper we have not
used the morphological informations since we want to obtain
reference results.

We therefore seek a function (model) f such as:

HRTFλ
o = f(HRTFλ

1 , ..., HRTFλ
n, θo, φo) (1)

where the output vector is a desired unmeasured HRTF, o, for
a user λ denoted HRTFλ

o and the input vector is composed
of two parts: 1) the position, the azimuth θo and the elevation
φo, of the desired unmeasured HRTFλ

o ; 2) one or some HRTFs
(HRTFλ

1 , ..., HRTFλ
n) measured on the user λ.

The next section (section III) deals with the real HRTFs
database, the preprocessing used and the constitution statistical
learning database.

Depending on the point of view (signal processing vs
perceptive point of view for instance), the representation of
the HRTFs may vary. Section IV motivates our choice of
representation.

Section V investigates which are the relevant HRTFs which
have to be measured. First the results are presented for one
user only, then extended to all users.

Section VI finally investigates the estimation for all users.
A short conclusion follows.

III. THE DATABASE

A. The CIPIC database

The data are taken from the public-domain database of high-
spatial-resolution head-related transfer functions measured at
the U. C. Davis CIPIC Interface Laboratory. In this database



every user is represented by his head-related impulse responses
(HRIR) for different azimuths and elevation (θ,φ), i.e. 1250
directions (see figure 1). All the experimentations described
in this paper may thus be reproduced.

Fig. 1. Graphical representation of the 1250 directions.

The database is made of 44 users, described by 1250 HRIRs
each. HRTFs are obtained by applying a fast Fourier transform
(FFT) to HRIRs. An HRTF is described by its module and
its phase. For this study we call “HRTF” the module which
has a minimal phase. This module is digitized at 44.1 kHz.
Each HRTF is therefore represented as a vector with 100
components, one component per frequency. The complete
description of the database can be found in [2]. All the
experimentations realized is this study were done for one ear
only. The results can obviously be extended to the other ear.

B. Preprocessing

The amplitude scale of the HRTFs is initially linear. It is
transformed into a logarithmic scale closer to our auditive
perception than linear scale (see [17] for instance).

In terms of dynamics, we consider that a lower threshold
of −80dB (10−4 in scale of linear amplitude) is sufficient
from a perceptive point of view. The input vectors, HRTFs,
are transformed as follows:

Hl(λ,θ,φ)(fn) = 20 log10

(
max(Hλ,θ,φ(fn), 10−4)

)
(2)

where to simplify the notations we denote H a HRTF in
the linear scale, Hl a HRTF in the logarithmic scale and fn

the frequency bands.
An example of Hls is given in the figure 2 for user 1 of the

database and for three positions: (θ=-80, φ=-45), (θ=0, φ=90)
and (θ=80, φ =230). Even on a log-scale, the spectra exhibit
strongly localized features which are critical for the sound
localization. The accurate modeling of such features from a
few measurements only is therefore a complex challenge.

C. Statistical Learning Set

During the development of a modeling (or an exploratory
analysis) it is well known that it is necessary to split the data in
several sets. A training set used to adapt the parameters of the
model, a validation set to control the training phase and pre-
vent over-training and a test set to estimate the generalization
error of the modeling.
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Fig. 2. Three HRTFs on different positions for the user 1.

In the case of the study of only one user the three sets
described above allow to study the capabilities generalization
of the model, on out of training set positions for this user.
The database is restricted to one user and split according to
the index (line number) of the positions as follows: the training
set is made of HRTFs with indexes in {1, 5, 9,..} and {2, 6,
10,..}, the validation set HRTFs have indexes in {3, 7, 11,..}
and the test set HRTFs in {4, 8, 12,..}. The size of the learning,
validation and test sets are respectively: 50 %, 25 % and 25 %
of the data available for this user.

In the case of the study of all the users of the CIPIC
database, the three sets allow to study the capabilities gen-
eralization of the model on out of training set users. These
three sets are thus defined according to the users. The learning,
validation and test sets are respectively constituted of all the
HRTFs of the users 1 to 22, 23 to 33 and 34 to 44. The size
of the learning, validation and test sets are respectively: 50 %,
25 % and 25 % of the data available .

The results presented below are always given for the test
set.

IV. THE POSSIBLE REPRESENTATIONS OF HRTFS

A. The perceptive point of view

The amplitude scale of the HRTFs is logarithmic, as ex-
plained above. However the spectral resolution of the data
could also be modified so that it is perceptively more relevant.
Studies showed that the spectral scales such as the Barks scale
(or the scale of the critical bands) or the ERB scale (Equivalent
Rectangular Bandwidth) are closer to the properties of our
auditive system [3].

These spectral scales are defined by a set of coefficients
{αn} and these coefficients can be included in the input vector
as described in the equation 3.

Hlper
(λ,θ,φ)(fn) =

√
αn Hl(λ,θ,φ)(fn) (3)



B. The directional point of view

Two principal reference fields were recommended by the
manufacturers of audio helmets:

• the free field constituted of a wave plane coming from a
given incidence;

• the diffuse field constituted of decorrelated plane wave
coming from incidences uniformly distributed around the
head of the receiver.

Diffuse equalization field offers advantages compared to
free equalization field because it allows to eliminate the
artifacts of measurements independent of the direction and
to reduce to a significant degree the differences between
the sessions of measurements between users. This has the
drawback to incorporate a complex preprocessing1. on the
CIPIC database.

C. Choice of the representation

This paper will only report results relative to the simplest
representation: free field HRTF representation without percep-
tive spectral scale. This gives a reference result for further
studies incorporating more complex preprocessings on the
HRTFs.

D. Quality evaluation of estimated HRTFs

The best way of evaluating the performance reached by the
modeling would be to carry out perceptive tests. This has how-
ever a major drawback, the evaluation cannot be duplicated by
other research groups. We shall therefore compare estimated
and measured HRTFs according to an error function defined
as:

Eλ,θ,φ =
1

100

100∑
n=1

∣∣∣Ĥlλ,θ,φ(fn) − Hlλ,θ,φ(fn)
∣∣∣ (4)

This error will be called quantification error in the section
V and modeling error in the section VI.

V. SELECTION OF THE RELEVANT HRTFS

A. Introduction

To find the HRTF that should be measured a clustering
method and a uniform selection are compared. These methods
allow to elect “representative” HRTFs i.e those which will
have to be measured to estimate all the others. The section
V-B.1 and V-B.2 describe the methodology used to elect
HRTFs using respectively SOM and uniform selection. The
study is done first for one arbitrarily chosen user: the user
1 of the CIPIC database (who is not a KEMAR: Knowles
Electronics Mannequin for Acoustics Research). Section V-B.3
compares the results of both methods. Section V-C discusses
the extension to all the users.

1A computing method suggested by Véronique Larcher [13] is available
in the binaural toolbox (for matlab) of the IRCAM (Institut de Recherche et
Coordination Acoustique / Musique, www.ircam.fr)

B. Relevant HRTFs for one person

1) Relevant HRTFs found with a SOM-based approach:
Among clustering method we choose a Self-Organizing Map
(SOM) [12] to cluster the HRTFs. The Euclidean distance,
between the vectors Hlλ,θ,φ and Hlλ′ ,θ′ ,φ′ is defined as:

d(Hlλ,θ,φ,Hlλ′ ,θ′ ,φ′ ) =

1
100

100∑
n=1

(
20.log10

( max(Hλ,θ,φ(fn), 10−4)
max(Hlλ′ ,θ′ ,φ′ (fn), 10−4)

))2

(5)

The best map size2, for the case study was determined to
be 12x12. This map allows to track down the characteristic
profiles of the HRTFs.

Projecting the azimuth and elevation informations (not used
to build the SOM) on the map allows to investigate the
distinctive profiles of the clusters found. This projection allows
to determine for one user the spatial position of the repre-
sentative HRTF of each cluster of the SOM. Intra-prototype
inhomogeneity is characterized by a regrouping, within the
same prototype, of HRTFs measured for positions spatially
distant and inter-prototype inhomogeneity by a regrouping of
spatially distant HRTFs in nearby prototypes. Inhomogeneities
visualization can be done using a color code on the SOM.

Projection of the average (see Figure 3) and the standard
deviation (not presented here) of the azimuth and the elevation
show a good homogeneity as regards to the azimuth but
inhomogeneities as regards to the elevation. These projections
show that our SOM has no problem to distinguish its left from
its right but has problems of back / front confusion. This a well
know confusion problem already mentioned in the literature
[1], [21]. The fact that our clustering scheme exhibits this
behavior is interesting by itself and will be the matter of further
studies.
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Fig. 3. Projection of the average of the azimuth on the left and of the elevation
on the right. The SOM presents a good homogeneity for the azimuth: the color
goes gradually from the white (western southern corner of the map) to the
black (northern corner). But it presents inhomogeneities inter-prototypes in
the north-east for the elevation (fast passage of the black to the white).

To avoid such inhomogeneities, we divide our set of vectors
in two subsets: one, containing the HRTFs located at the front
and the other, containing the HRTFs located at the back.
Two SOMs now have to be built. Again, a SOM of size
12x12 presents a good distribution of the data with few empty

2All the experimentations on SOM have been done with the SOM Toolbox
package for Matlab c© [18]



prototypes and few inter or intra prototype inhomogeneities.
The projection of the average of the azimuth on the two
SOMs (not presented) shows that one keeps a good left / right
discrimination. The projection of the average of the elevation
on the two SOMs is presented on figure 4. These two maps
do not present intra or inter prototype inhomogeneities .
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Fig. 4. Projection of the average of elevation for the front hemisphere on the
left map and for the back hemisphere on the right map. The SOMs present a
good homogeneity: the color goes gradually from the white to the black.

A hierarchical agglomerative clustering (HAC) algorithm
using Ward criterion is run on top of each map, revealing
groups of HRTFs with similar profiles [14]. This clustering
is done on the prototypes of the SOM themselves, not on
the prototypes weighted by the number of cases belonging to
each prototype. As we want to reduce the number of measured
HRTFs we can exploit this clustering for HRTFs selection in
a very natural way: we choose one representative HRTF per
cluster, as the “paragon” of the cluster, i.e. the HRTF in the
cluster which minimizes the sum of the distances to the other
HRTFs of the cluster and end up with M representative HRTFs
to be measured. The number M of clusters can be varied by
truncating the HAC tree at the desired level.

2) Uniformly distributed Relevant HRTFs: We use M rep-
resentative HRTFs with spatial positions uniformly distributed
on the surface of the sphere. These uniformly distributed
representatives are selected as follows: conversion of the
polar coordinates (θ,φ) of the positions of the HRTFs in
Cartesian coordinates (x, y, z); clustering of the positions in M
clusters using the k-means algorithm (with k = M ); selection
of one representative HRTFs by cluster. This approximately
maximizes the geodesic distance between the representative
HRTFs, assuming a good uniformity of the sampling.

3) Comparison of the representatives HRTFs: The simplest
model is to estimate all the HRTFs of the user by its represen-
tative HRTFs. This model makes a mean “quantification” error
for each frequency of the HRTFs. The mean quantification
error decreases with the number of clusters (the number of
measured HRTFs).

Figure 5 shows the variation of the quantification errors
of both methods versus the number of clusters. This figure
shows that for one user, the SOM-based selection is more
efficient: a 3 dB mean error can be reached with 45 SOM
representatives as compared to 70 for the uniformly distributed
representatives. This point is very interesting for people who
want to establish a model valid only for one user [6].

It must be noted however that the two methods are very
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Fig. 5. Average Quantification Error versus the number of representative
HRTFs. The error made with the representative HRTFs found with SOMs is
better than with the uniformly distributed representatives.

different in terms of implementation: the choice of uniformly
distributed representative HRTFs can be made without any
information about the user, while the SOM-based selection
requires the prior measurements of enough HRTFs to build a
training set for the learning process.

C. Discussion: Relevant HRTFs for all

Again the simplest model is to estimate all the HRTFs of a
user by its representative HRTFs. For the SOM-based selection
process, we used the representative HRTFs selected by the
previous study on user 1 of the CIPIC database. Figure 6
shows the variation of the quantification errors of both methods
versus the number of clusters.

The average error on all the test users of the CIPIC database
(11 users) using the SOM-based positions is greater than the
error made using uniformly distributed representatives HRTFs.
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Fig. 6. Average Quantification Error versus the number of representative
HRTFs. For all users, the error made with the representatives HRTFs found
with SOMs is worse than with the uniformly distributed representatives

Comparing figures 5 and 6, it is also clear that the quality
of the modeling for all users is much worse than for one
user: 90 representatives at least are required to reach a 3
dB average quantification error, a figure much too high for
a real application. Therefore, it is needed to introduce a more
sophisticated modeling than the simple quantification. This is
described in the next section.



VI. INDIVIDUALIZATION OF THE HRTFS

A. Introduction and Experimental conditions

The modeling has to improve the results obtained with the
quantification procedures described in the previous section.
Other practical implementation requirements for the model are
that (once determined by the learning phase) the function f
should be fast and should not require a lot of memory. There
are no such requirements for the learning phase itself since it
is done once and is valid for all users. Our approach relies on
the training of an artificial neural network [20] to approximate
the equation 1.

The preprocessing used is only a zero-mean, unit-variance
standardization. The neural network used is a multilayer
perceptron (MLP) with 1 hidden layer, tangent hyperbolic
activation function and stochastic back-propagation of the
squared error as training algorithm. We added a regularization
term active only on directions in weight space which are
orthogonal to the training update [5].

B. A general model for all

During the development of the neural network, the learning,
validation and test set allow to study the capabilities general-
ization of the neural network on out of training set users. These
three sets are thus defined according to the users. The training,
validation and test sets are described in the section III-C. The
key point here is that the HRTFs of users belonging to the test
set are not used at any point of the learning process ensuring a
correct definition of the generalization error. The single model
obtained is valid for any user and any position. The number
of neurons in the hidden layer, 50, was determined using a
cross-validation [11].

The database used to train the neural network is constituted
by couples of input and output vectors3 but now corresponding
to any user of the CIPIC database. The output vector is a
desired unmeasured HRTF for a user λ; denoted HRTFλ

o . The
input vector is composed of two parts: 1) the position of the
desired unmeasured HRTFλ

o ; 2) one or some measured HRTFs
(HRTFλ

1 , ..., HRTFλ
n). The neural network learns the function

f defined as:

HRTFλ
o = f(HRTFλ

1 , θ1, φ1, ..., HRTFλ
n, θn, φn, θo, φo) (6)

The error estimation can be studied as a function of the
measured HRTFs and as a function of the number, n, of HRTFs
incorporated in the input vector. Here we restrict the study to
the case n = 1. The input vector is therefore composed of an
only one measured representative HRTF taken as the closest
to the position of the desired unmeasured HRTF (in geodesic
distance).

The representative HRTFs used are the uniformly distributed
representative HRTFs found with the method given in section

3For instance for the training set: 1) there are 1250 measured directions
(see section III) available per user in the CIPIC database; 2) n of these
measurements are used to constitute the input vector; 3) 22 users (see section
III-C) are in the training set. Then one has: [(1250 − n) x 22] couples of
input and output vectors in the training set.

V-B.2, in agreement with the results of section V-C. The mod-
eling error (equation 4) and the quantification error are given
on the figure 7 as a function of the number of representatives.
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Fig. 7. Comparison between quantification error and modeling error.

The figure 7 shows that the modeling allows a better
estimation than a quantification procedure: to obtain an error
below 3 dB, one needs, to measure 90 HRTFs using the
quantification procedure and only 50 with the neural network
model.

Another presentation of the results with 50 HRTFs is given
on the figure 8 for the user 34 (belonging to the test set see
section III-C).
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Fig. 8. For the vertical plane: on top the desired (measured) HRTFs below
the obtained (estimated) HRTFs using a neural network-based modeling.



These figures compare the log-magnitude of estimated
HRTFs and measured HRTFs for user 34 for the zero-azimuth
plane as a function of elevation and frequency. The magnitude
level is described by the grey scale. Vertical black lines refer
to representative HRTF which are not plotted.

It can be clearly seen that the global shapes are very close
and the dynamics of the signal are respected. Furthermore,
figures of diffraction are well reproduced particularly those
induced by the head and torso (θ = [-50o-50o] and freq = [2
kHz-4 kHz]) and those induced by the pinna (freq > 6 kHz).
The former is a major cue for individualization.

Current performances of HRTF physical modeling (BEM:
Boundary Element Method [8]) do not reach this accuracy.
Informal listening of V.A.S. using estimated HRTF gives good
3-D audio rendering and very close perception to the measured
one.

VII. CONCLUSION

This study is a first step to have a simple and efficient
modeling of the HRTFs with few measurements only. It
has been shown that the combination of a set of uniformly
distributed representative HRTFs and a neural network-based
modeling can reach very promising results, allowing to syn-
thesize the HRTFs of any user for all orientations from only
50 measurements on this user, with an average error less than
3 dB.

These results could be improved in many aspects. Among
possible improvements, the inclusion of morphological mea-
surements, the use of different preprocessings or of learning
machines different from the MLP will be investigated.
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[14] V. Lemaire and F. Clérot. Som-based clustering for on-line fraud
behaviour classification : a case study. Fuzzy Systems and Knowledge
Discovery (FSKD), 2002.

[15] P.H.W. Leong and S. Carlile. Methods for spherical data analysis and
visualisation. Journal of Neuroscience Methods, 80, Issue 2:191–200,
1998.

[16] G. Plenge. On the differences between localization and lateralization.
Journal of the Acoustical Society of America, 56:944–951, 1974.

[17] J.O Smith. Techniques for digital filtering design and system identifica-
tion with the violin. PhD thesis, CCRMA, Stanford, 1983.

[18] Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha Parhankangas.
SOM toolbox for Matlab 5. Report A57, Helsinki University of
Technology, Neural Networks Research Centre, Espoo, Finland, April
2000. http://www.cis.hut.fi/projects/somtoolbox/.

[19] E.M. Wenzel, M. Arruda, D. Kistler, and F. L. Wightman. Localization
using non-individualized head-related transfer functions. Journal of the
Acoustical Society of America, 94:111–123, 1993.

[20] H. White and K. Hornik. Multilayer feedforward networks are universal
approximators. Neural Network, 2:359–366, 1989.

[21] F. L. Wightman and D. J. Kistler. Headphone simulation of free-field
listening I: stimulus synthesis and II: psychophysical validation. Journal
of the Acoustical Society of America, 85:858–878, 1989.


