Adaptive Curiosity for Emotions Detection in Speech

Alexis Bondu, Vincent Lemaire
Orange Labs
2 avenue Pierre Marzin
22307 Lannion Cedex - France
E-mail: {alexis.bondu,vincent.lemaiy@ orange-ftgroup.com

Abstract— Exploratory activities seem to be crucial for our
cognitive development. According to psychologists, explation
is an intrinsically rewarding behaviour. The developmentd
robotics aims to design computational systems that are endad
with such an intrinsic motivation mechanism. There are posible
links between developmental robotics and machine learning
Affective computing takes into account emotions in human
machine interactions for intelligent system design. The ma
difficulty to implement automatic detection of emotions in
speech is the prohibitive labelling cost of data. Active leming
tries to select the most informative examples to build a traling
set for a predictive model. In this article, the adaptive cuiosity
framework is used in terms of active learning terminology,
and directly compared with existing algorithms on an emotim
detection problem.

|. INTRODUCTION AND NOTATION

Notations:

M € M is the predictive model that is trained with an
algorithm £. X C R"™ represents all possible input examples
of the model andr € X is a particular exampleY is the
set of possible outputs of the modele Y refers to a class
label which is associated to € X.

The point of view of selective sampling is adopted [4] in
this paper. The model observes only one restricted parteof th
universe® C X which is materialized by training examples
without label. The image of éag” containing examples for
which the model can ask for associated labels is usually used
to describe this approach. The set of examples for which the
labels are known (at one step of the training algorithm) is
called L. and the set of examples for which the labels are
unknown is called/ with ® =U U L andU N L = (.

Human beings develop in an autonomous way, carrying out The concept which is learnt can be seen as a function,
exploratory activities. This phenomenon is an intrindical f: X — Y, with f(z;) the desired answer of the model for
motivated behavior. Psychologists [1] have propose theotiie exampler;. f: X — Y is the answer of the model; an
which explain exploratory behavior as a source of selgéstimate of the concept. The elementd.aind the associated
rewarding. Building a robot with such behavior is a grealabels constitute a training sét. The training examples are
challenge of developmental robotics. The ambition of thipairs of input vectors and desired labels suchasf (z)).
field is to build a computational system that tries to capture

curious situations. Adaptive curiosity [2] is one possibil

to reach this objective, it pushes a robot towards situatio
in which it maximizes its learning progress. The robo

II. ADAPTIVE CURIOSITY - ORIGINAL CHOICES

. Generic Algorithm

first spends time in situations that are easy to learn, then Adaptive curiosity [2] involves a double strategy. The first

shifts progressively its attention to more difficult sitioais,

strategy makes a recursive partitioningfthe input space

avoiding situations in which nothing can be learnt. of the model. The second strategy selects zones to be fed with
On the one hand, active learning brings into play a predidabelled examples (and to be split by recursive partitighin
tive model that explores the space of unlabelled exampies, lit is an active learning as long as the selection of a zone
order to find the most informative ones. On the other handlefines the subset of examples which can be labelled (those
adaptive curiosity allows a robot to explore its environinernwhich belong to the zone). Adaptive curiosity is described
in an intelligent way, and tries to deal with the exploration below in a generic way and illustrated by an algorithm.
exploitation dilemma. This article uses the bridge elatmmta  The input spac& is recursively partitioned in zones (some
in [3] between developmental robotic and classical machiraf them are included in others). Each zone corresponds to
learning to explore the data. a type of situations the robot must learn. Adaptive cunposit
The organization of this paper is as follow: in section lluses a criterion to select zones and preferentially spléas
adaptive curiosity is presented in a generic way, and aalginof input spaceX in which learning improves. The main idea
choices of implementation are described. The next sectidas to schedule situations to be learnt in order to accelerate
shows a possible implementation of adaptive curiosity fathe robot’s training.
classification problems, a new criterion of zones selecison  Each zone is associated with a sub-model which is trained
proposed. Section Il compares the new adaptive curiosityith examples belonging only to the zone. Sub-models are
strategy with two other active learning strategies, on a dérained at the same time, on disjointed examples sets. The
tection of emotions problem. Finally, possible improvetsen partitioning of the input space is progressively realizddlgy
of this adaptive curiosity are discussed. new examples are labelled. Just before the partitioning of a



zone, the sub-model of the “parent” zone is duplicated in The following paragraphs describe the original answers
“children” zones. Duplicated sub-models continue indeperof P. Y. Oudeyer to these questions [2].

dently its learning thanks to the examples that appear iin the

own zones. Partitioning:

Algorithm (1) shows the general steps of adaptive cuA zone must be partitioned when the number of labelled
riosity. It is an iterative process during which examples arexamples exceeds a certain threshold. Partitioned zomes ar
selected and labelled by an expert. A first criterion choasesthose which were preferentially chosen during previous it-
zone to be fed with examples (stage A). The following stagerations. These zones are interesting to be partitionechwhe
consists in drawing an example from the selected zone (stagwre populated. Associated sub-models have done important
B). The expert gives the associated label (stage C) and theogress.
sub-model is trained with an additional example (stage D). To cut a “parent” zone into two “children” zones, all
A second criterion determines if the current zone must béimensions of the input spac& are considered. For
partitioned. In this case, one seeks adequate separationg@ich dimension, all possible cut values are tested using
the “parent” zone to create “children” zones (stage i). lyast the sub-model to calculate the variance of example’s
the sub-model is duplicated into the “children” zones (stagpredictions on both sides of the separation. During this
ii). stage, observable dafais used. This criterichconsists in
finding a dimension to cut and a cut value minimizing the
variance. This criterion elaborates preferentially puoaes
to facilitate the learning of associated sub-models. Aeoth

Given: constraint is added by the authors, the cut has to separate
e a learning algorithmC labelled examples into two subsets whose cardinalities are
e a set M = {mi,ma,...,m,} of n predictive sub- about balanced.

models

o U = {u1,us,...,un}, n subsets of unlabelled examples

o L ={l,l I}, n subsets of labelled examples Zones selection:
o« T — {tll 52 o ;‘n} the training subsets corresBondinc At every iteration, the sub-model that most improves result

to sub-models, witht; = {(z, f(2))} Vz € I, is considered as having the strongest potential of improve-
ment. Consequently, adaptive curiosity needs an estimatio

;;elat of sub-model’s progress. Firstly, performances of sub-et®d
(A) Choose a sub-modein; to be fed with are measured on labelled data. The choice of a measure
examples of performance is required. Secondly, sub-models’ perfor-
((E;) E;ab"e"l ?hgﬁ;v;;ggglf fro;“ CJ‘ e mances are evaluated on a temporal window. The sub-model
EDg Train the Sub-modei’n; t<h—anlks igﬁy,féxar)l)d that realizes the most important progress is chosen to be fed
4 with new examples that are uniformly drawn.
If the split criterion is satisfiethen
(i) Separatd; in two sub-setd; andl;. the I11. ADAPTIVE CURIOSITY FORCLASSIFICATION
most homogeneous as possible .
(i) Duplicate m; into two sub-modelsn; A. Introduction
Zﬁf?inﬂ The original criterion of zones selection is not adapted
end If to classification problems and it is difficult to implement
until U £ 0 [3]. Indeed, this criterion requires a measure of perforogan

which variations are examined on a temporal window to
estimate robot’s progresses.

Adaptive curiosity tries to deal with the dilemma explo-
ration / exploitation drawing new examples in zones where
progress is possible. To take in consideration the dilemma
B. Parameters - Original Choices exploration / exploitation in a better way, a new criteridn o

zones selection is proposed in this section. The rest of the

The main purpose of this algorithm is to seek interestingdaptive curiosity method is not modified. The new criterion
zones in the input space while the machine discovers datacomposed by two terms which respectively correspond to
to learn. The algorithm chooses, as soon as possible, thfe exploitation and the exploration. A compromise between
examples belonging to the zones where there is possieth terms is provided by the new criterion.
progress. Five questions appear: (i) How to decide if a zone Others implementation elements are exposed in section VI
must be partitioned? (ii) How to carry out the partitioning%uch parameters of the partitioning strategy (see VI-Csor
(i) How many “children” zones? (iv) How to choose zonesthe experimental protocol (see VI-E).
to be fed with labelled examples? and (v) What kind of
sub-models must be used?

Algorithm 1: Adaptive Curiosity

1This recursive partitioning uses a discretization metHeat. a state of
the art on discretization methods, interested readers ef@n to [5].



B. Exploitation: Mixture rate

Among existing splitting criteria [6], we use the entropy Interest(l,¢) = (1 — o) MizRate(l) 3)

as a mixture rate. The functiomizRate(l) (equation 1) +a (1 — RelativeDensity(l, ¢))
uses labels of examplédsC L, that belong to the zone, to
calculate the entropy over classes.

Part “A” of equation 1 corresponds to the entropy o
classes that appear in a zone. Probabilities of clagggs)
are empirically estimated by a counting of examples whic
are labelled with the considered class.

The entropy belongs to the intervél, log |Y|] with |Y]
the number of classes. ParB” of equation 1 normalizes
mixture rate in the intervalo, 1].

The notion of progress is included in the criterion: the
frelative density (that increases at the same time new exampl
are labelled) forces the algorithm to leave zones in which
Hﬁixture rate does not increase quickly. If there is nothing
else to discover in a zone, the criterion naturally avoids it
In some cases, the criterion prefers none mixed zones which
are insufficiently explored. This criterion does not need a
temporal window to evaluate the progress of sub-models (see
section II-B). So its implementation is easier than orifjina
adaptive curiosity approach. Figure 3 shows an experiment

MizRate(l) = — Z P(y;)log P(y;) x b (1) thatis realized on the toy ex_ample, using the criteri(_)n with
gy log Y| a = % Input space partitioning and examples drawing are
B organized around the boundary considering every region of
A space.
l =y
with Ply;) — 1£EL JICZ(II) il
151y o °, ’ o ]

Mixture rate is the “exploitation” term of the proposed
zones selection criterion. By choosing zones that have the it o
strongest entropy, the hidden pattern is locally clarified
thanks to new labelled examples that are drawn in these
zones. The model (see VI-B) becomes very precise, on some
area of the space. Figure 1 shows an experiment that is
realized on a toy example (see VI-A), using only entropy
to select interesting zones. Selected examples are grouped
around the boundary, but there is a large part of the space
that is not explored. 15 | . X

-1.5 -1 -0.5 0 0.5 1 15

C. Exploration: Relative density

Relative density is the proportion of labelled examplegligf-ir; leses'e‘;tﬁg ‘ﬁxsg?ﬁt'sesc) fuzg‘gor':’gxéfarsesRate onlinwith “o” points
among available examples in the considered zone. Equation ’
2 expresses relative density, with C & the subset of
observable examples that belong to a zone. As mixture rate,

relative density varies in the intervél, 1]. 15 | )é ' o °'g o

o o 9
° )
00 ® 8 oo
|l| |° o

] )

Relative density is the “exploration” term of the criterion
The homogeneity of drawn examples over the input space ; ‘ L
is ensured by choosing zones that have the lowest relative |, LN S I T
density. This strategy is different from a random sampling T . ] T e
because homogeneity of drawn examples is forced. Figure ) S S . X R
1 shows an experiment that is realized on the toy example, ‘e . o el e Ny ‘
using relative density to select interesting zones. Inpate e I o e X
partitioning and examples drawing are homogeneous. 45 -1 05 0 05 1 15

RelativeDensity(l, ¢)

D. Exploitation vs. Exploration Compromise Fig. 2. Selected examples using Relative Density onlyXinwith “o”
points of first class, ande” points of second class

The criterion evaluates the interest of zones, taking into
account both terms; mixture rate and relative density. Equa Figure 4 shows performances (see VI-D) of the pro-
tion 3 shows how each term is used. The parameter[0,1] posed strategy for various values of Whena = 0 only
corresponds to a compromise between exploitation of ajreadhixture rate is considered by the criterion. In this case,
known mixture zones and exploration of new zones. the observed performances are significantly lower than the



“stochastic” strategy considering less than 100 examples. V. APPLICATION TO EMOTION DETECTION

This phenomenon can be intuitively interpreted by a strong

exploitation of detected mixture zones, to the detriment oA. Introduction

the remaining space. When = 1 only relative density

is considered. In this case, adaptive curiosity gives lower OWing to recent techniques of speech processing, many

performances than the “stochastic” strategy considerssg | @utomatic phone call centers appear. These vocal servers

than 70 examples. The best performances are observed #¢ Used by customers to carry out various tasks conversing

o = 0.25. In this case, the maximum AUC is reached veryVith a machine. Companies aim to improve their customer’s

early (with 60 labelled examples). Observed performancédtisfaction by redirecting them towards a human operator,

are superior to stochastic strategy for all considered rarmbin the event of difficulty. The shunting of unsatisfied users i

of learnt examples. This value obviously offers a goo&arried out detecting the negative emotions in their diaésg

compromise between exploration and the exploitation. ~ With the machine, under the assumption that a problem of

dialogue generates a particular emotional state in theestibj

, , , , , , , The detection of expressed emotions in speech is generally

15ty o o ° o considered as a supervised learning problem. The detection

> ° of emotions is limited to a binary classification since takin

o ) into account more classes raises the problem of the objectiv
W ity of labelling task [7]. In this application, the acquisit

and the labelling of data are costly. Active learning can

ol reduce this cost by labelling only the examples considered

o S J to be informative for the predictive model.

B. Characterization of data

ST S * .. . X . , . .
- - - This study is based on a previous work [8] which charac-

terizes vocal exchanges, in optimal way, for the classificat
of expressed emotions in speech. The objective is to control
the dialogue between users and a vocal server. More pre-
cisely, this study deals with relevance of variables dbesugi
data, according to the detection of emotions.

The used data results from an experiment involving 32

-1.5 -1 -0.5 0 0.5 1 15

Fig. 3. Selected examples with = 0.5 in X, with “o” points of first
class, and é” points of second class

0.96 | users who test a stock exchange service implemented on a
vocal server. According to the users point of view, the test
094 L consists in managing a virtual portfolio of stock optioriee t
goal is to realize the strongest profit. The obtained vocal
0.92 | traces constitute the corpus of this study: 5496 “turns of
S speech” exchanged with the machine. Turns of speech are
< ool characterized by 200 acoustic variables, describing tiana
Stochastic of the sound intensity, variations of voice height, freguen
0.88 | a=0- of elocution... Data is also characterized by 8 dialogical
"C,Z%Z_E . variables describing the rank of a turn of speech in a
0.86 | a :ao-ﬁ : dialogue, the duration of the dialogue... Each turn of speec

0 50

100 150
Number of labelled examples

Fig. 4. AUC vs number of examples

200

is manually labelled as containing positive (or neutral) or
negative emotions.

The subset of the most informative variables with respect
to the detection of expressed emotions in speech is given
thanks to a naive Bayesian selector [5]. At the beginning

These results show that adaptive curiosity can be benefif the selection of the most informative variables, the set
cially used in active learning framework, with the proviso o of attributes is empty. At each iteration, the attributettha
using an adapted zones selection strategy. Moreover, the nmost improves the quality of the predictive model is added.
strategy of zones selection is only based on data typologyhe algorithm stops when the addition of attributes does
Sub-models are only used to carry out the partitioning angot improve any more the quality of the model. Finally, 20
not to choose interesting zones.

variables were selected to characterize vocal exchanges. |
this article, used data comes from the same corpus from this
previous study [8]. So, every turn of speech is charactdrize
by 20 variables (see VI-G).



C. The choice of the model maximize the uncertainty of the model. The uncertainty can

) be expressed as follows:
Parameters that must be adjusted to use a model may .

represent a bias for measuring the contribution of a legrnin Tncertain(z) = _ reX

strategy. A Parzen window, with a Gaussian kernel [9], is argmazy, ey P(y;|z)

used in experiments below since this predictive model uses

a single parameter and is able to work with few examples. Sampling by risk reduction aims to reduce the generaliza-
This model has been chosen to compare obtained resuign error, £(M), of the model [14]. This strategy chooses

using adaptive curiosity and previous results [10] usin§xamples that minimize this generalization error. In this
classical active learning strategy. The “output” of thisdeb paper, the generalization errof/(M)) is estimated using

is an estimate of the probability to observe the lapel the empirical risk [15]:

conditionally to the instance: L
A |L]
N E(M)=RM)=>"" Lipwyry,) Py;le)Pz:)
p(y|u) _ Zn:l I]'{f(ln):yj} K(U, ln) (4) i=1 ijY
J - N
2on—1 K(u,ln) where f(x;) is the predicted class of the instaneg 1 the
with indicating function equal td if f(z;) # y; and equal to

0 else, andP(y;|z;) is the probability to observe the class
y; for the exampler; € L. ThereforeR(M) is the sum of
and the probabilities that the model makes a bad decision on the
Lu—tnll? training set ). Using a uniform prior to estimaté(z;),
K(u,ln) = e 5 one can write:

ln,€ Lyetuec U, ULy,

The optimal value £2=0.24) of the kernel parameter R 1 X
was found thanks to a cross-validation using the whole of R(M) = 17 Z Z L{f(av;) Pyilei)
available training data [11]. Thereafter, this value isdis® i=1y; €Y
fix the Parzen window parameter. The obtained results (using order to select examples, the model is re-trained several
all pieces of training data) are similar with the previougjmes considering one more “potential” example. Each in-
study that was realised with a naive Bayesian classifier [8tancer ¢ 7 and each label; € Y can be associated to
Thus, Parzen windows are considered satisfying and valid feonstitute the additional example. The expected risk of an

the following active learning procedures. Moreover, kémMesxamples € U that is added to the training set is then:

methods and closer neighbour methods are usually employed . .

in classification of expressed emotions in speech [12]. R(M™™) = Z P(y;le) RM @)Y withz € U
The model must be able to assign a Iaﬁ(ab) to an input yj €Y

dataw, so a decision threshold noté&dh(L,) is calculated

at each iteration. This threshold maximizes the AUC of th&. Results

model on the available training set. The predicted label is . . .

Flun) = 1if {Plyilun) > Th(Ls)}, else f(un) = O. Several experiments were realised. Each experiment has

Since the single parameter of the Parzen window is fixe&’,eerl done f!ve t|m_é3|n ord_er to obtain average perfor-

the training stage is reduced to count instances “inside” g{nances provided W'.th. a varlance. A.‘t the beginning of each

Gaussian kernel. In such conditions, strategies of exaEmpISXpe”ment’ the training set contains only two randomly

selection are comparable without influence of the trainihg Qchosgn examples (one positive and one negative). At each
the model. iteration, ten examples are selected to be labelled anddadde

to the training set. The considered classification problem i
unbalanced: there are 92% of positive (or neutral) emotions
and 8% of “negative” emotions. To observe correctly the
The objective of this section is to compare adaptivélassification profits when examples are labelled, the model
curiosity with active learning strategies already desilin 1S evaluated using the AUC (see VI-D) on the test examples
the literature. Two alternating strategies are considareiiis sef.
paper: uncertainty sampling and sampling by risk reduction For this real world problem no information to adjust
Uncertainty sampling [13] is based on the confidence th@@rameters of adaptive curiosity is available, so we use
the model has on its predictions. The used model must fe= 0-5 as a default value. Because of the important size
able to produce an output and to estimate the relevance of f ¢ (1200 examples), the partitioning step is very long to
answers. In the case of the Parzen window, the confidencel$f computed. So, the partitioning threshold increased)to
a prediction is based on the estimated probability to oleser@*@mples in a zone. In such conditions, adaptive curiosity
the pred|ct(_ed class. More preC|§§Iy, a prediction is C(BTEld_ 2the natches on the curves of the figure 5 correspond to 4 times t
as uncertain when the probability to observe the predict@riance of the resultsH2o).
class is weak. This strategy selects unlabelled exampégs th 3The test set includes 1613 examples and the training set &@8ples

D. Used Active Learning strategies
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Fig. 5. Focus of the results on the test set using [0:1200]itrg examples

is the strategy that maximizes the quality of the predictive
model. Adaptive curiosity is significantly better than thiber
strategies for a number of labelled examples in the rangé!
[80:1200]. Moreover the observed variance of the results is
very low. [4]

The two other active strategies are more difficult to dif-
ferentiate. Between 100 and 700 labelled examples the uns;
certainty sampling wins, and beyond 700 labelled examples
the sampling by risk reduction is better than the uncenaint
sampling.

On this real problem, active strategies allow to obtain
the optimal performance using fewer examples than thé’)
stochastic strategy. Adaptive curiosity reaches the agitim
AUC (0.84) with only 500 examples. These results show|8]
adaptive curiosity is a competitive active learning siggte
for detection of emotions in speech.

(6]

El
[20]

This paper shows adaptive curiosity can be used as an
active learning strategy in machine leaning framework. &or[11]
precisely, adaptive curiosity seems to be very efficient fo[rlz]
detection of emotions in speech.

Adaptive curiosity is a strategy that is not dependent of
the predictive model. In this article, two different pretiie (2!
models are used (a logistic regression in part Ill, a Parzen
window in part 1V). Consequently, this strategy can be
applied on numerous real problems and is easy to use with]
existing systems.

We have defined a new zones’ selection criterion that gives
good results on the considered toy example and on emotiofts!
detection. However, this criterion balances exploitatiom
exploration using a parameter. Future works will be done
to make the algorithm autonomous to adjust this paramet@?’]
[16].

Adaptive curiosity was initially developed to deal with
high dimensionality input spaces, where large parts af’
unlearnable or quasi-random. Future works will be realiwed
estimate the interest of our new criterion in such condgion

V. CONCLUSION

The influence of the complexity of the problem to be learnt
(that is to say, the number of examples necessary to solve it)
will be also studied.

The partitioning step of adaptive curiosity hasCgn?)
complexity and is prohibitive to treat high dimensionality
datasets. Moreover, the cut criterion involves two paramset
the maximum number of labelled examples belonging to a
zone, and the maximum balance rate of labelled examples
subsets of a zone split. The use of non parametric discretiza
tion method [5] could be an efficient way to decide “when”
and “where” a zone has to be split. This aspect will be
considered in future works.

REFERENCES

R. White, “Motivation reconsidered: The concept of castgnce,”
Psychological Reviewol. 66, pp. 297-333.

P.-Y. Oudeyer and F. Kaplan, “Intelligent adaptive ogity: a source
of self-development,” ilProceedings of the 4th International Workshop
on Epigenetic Roboti¢sL. Berthouze, H. Kozima, C. G. Prince,
G. Sandini, G. Stojanov, G. Metta, and C. Balkenius, Edd., ¥b7.
Lund University Cognitive Studies, 2004, pp. 127-130.

A. Bondu and V. Lemaire, “Active learning using adaptimariosity,” in
International Conference on Epigenetic Robotics: Modgl@ognitive
Development in Robotic Systen2007.

R. Castro, R. Willett, and R. Nowak, “Faster rate in reggien via
active learning,” iInNIPS (Neural Information Processing Systems)
Vancouver, 2005.

M. Boullé, “An enhanced selective naive bayes methothwiptimal
discretization,” in Feature extraction, foundations and Application
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Eds. Springer,
August 2006, pp. 499-507.

L. Breiman, “Technical note: Some properties of spiitfi criteria,”
Machine Learningvol. 24, no. 1, pp. 41-47, July 1996.

J. Liscombe, G. Riccardi, and D. Hakkani-Tr, “Using oexit to
improve emotion detection in spoken dialog systemshierSpeech
Lisbon, 2005.

B. Poulain, “Sélection de variables et modélisatiotexgressions
d’emotions dans des dialogues hommes-machin€EGC (Extraction
et Gestion de Connaissance)lle. + Technical Report avalaible here:
http://perso.rd.francetelecom.fr/lemaire (in frencBPO6.

E. Parzen, “On estimation of a probability density fuontand mode.”
Annals of Mathematical Statisticsol. 33, pp. 1065-1076, 1962.

A. Bondu, V. Lemaire, and B. Poulain, “Active learningrategies: a
case study for detection of emotions in speech,GDM’ (Industrial
Conference of Data Mining)Leipzig, july 2007.

O. Chappelle, “Active learning for parzen windows diier.” in Al

& Statistics Barbados, 2005, pp. 49-56.

V. Guide, Rakotomamonjy, and S. Canu, “Méthode noyamur
I'identification d’&@motion,” in RFIA (Reconnaissance des Formes et
Intelligence Atrtificielle) 2003.

S. B. Thrun and K. Mdller, “Active exploration in dynaenenviron-
ments,” inAdvances in Neural Information Processing Systeing.
Moody, S. J. Hanson, and R. P. Lippmann, Eds., vol. 4. Morgan
Kaufmann Publishers, Inc., 1992, pp. 531-538.

N. Roy and A. McCallum, “Toward optimal active learnirigrough
sampling estimation of error reduction,” iRroc. 18th International
Conf. on Machine Learning Morgan Kaufmann, San Francisco, CA,
2001, pp. 441-448.

X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining &etilearning
and semi-supervised learning using gaussian fields and dméecm
functions,” inICML (International Conference on Machine Learning)
Washington, 2003.

T. Osugi, D. Kun, and S. Scott, “Balancing exploratiamdaexploita-
tion: A new algorithm for active machine learning,” Rroceedings of
the Fith IEEE International Conference on Data Mining (IC04),
2005.

1 W. S. Sarle, “Neural networks and statistical modeis,Proceedings

of the Nineteenth Annual SAS Users Group International €ente,
April, 1994 Cary, NC: SAS Institute, 1994, pp. 1538-1550.



VI. ANNEXE - DETAILS FOR REPRODUCTION F. Stochastic strategy

A. Toy example The *“stochastic” strategy handles a global model and
) _ o _uniformly selects examples according to their probability
The toy example is a binary classification problem in isiribution. This strategy plays a role of reference and is

two dimensional spack = x x y. We consider two classes seq to measure the contribution of adaptive curiosity.
that are separated by the boundary: sin(z?), on intervals

x € [-2,2] andy € [—2,2]. 2000 training examples were G. data of emotion detection
used (P) and 30000 test examples both uniformly generated

over the spac&. This part enumerates the 20 variables which characterize

vocal exchanges in emotion detection problem.

B. Used model for the toy example 1) System shut down (the user closes the dialog)

A logistic regression implemented by a neural network is 2) Number of words of the current turn of speech
used [17]. The outputs of this model are normalized by a 3) The user comments the dialog
soft max function in the interval0, 1]. Outputs correspond ~ 4) Number of errors on the current task
to probabilities of observing classes, conditionally te th- ~ ©) Total number of errors on nested tasks
stance that is placed as input of the model. Neural network’s 6) Increase of the signal intensity
training is stopped when the training error does not deereas /) Decrease of the signal intensity , ,
more than10—%, and the training step is fixed 602 8) Maxmum coefficient of the first harmonic of the signal
Logistic regression is used as a global model that is trained  (Fourier transform) _ , o
independently of the input space partitioning, using exasp 9) Avergge of the distribution of vqlce’s t|mbr¢ var|§1t|on
that are selected by sub-models. Sub-models play only a rol¢0) Maximum value of standard variance of voice's timbre
in the selection of interesting zones and in the selection of  Varation , , , -
instances to be labelled. A global model is trained usingll) Standard variance of voice’s timbre variation
these examples. The global model allows making a coherent?) Average of the distribution of power of high-frequency
comparison between adaptive curiosity and others steegi /10w frequency ratio.
that handle a single model. Performances of the global mode}i) Standard variance of signal energy

report only the quality of selected examples. ) Sum of standard variance of signal energy
15) Maximum value of standard variance of signal energy

C. Partitioning 16) D_erivative_ of signal energy
17) Jitter of signal energy
Zones containing at least 30 labelled examples are split18) Complete reformulation of the previous turn of speech
A cut separates labelled examples into tw@5% balanced  19) Complete repetition of the previous turn of speech
subsets (according to the criterion of section 1I-B). These20) Partial repetition of the previous turn of speech
arbitrary choices are preserved for all experiments in this
paper.

D. Measure of performances

ROC curves plot the rate of good predictions against
the rate of bad predictions on a two dimensional space.
These curves are built sorting instances of test set aguprdi
to the output of the model. ROC curves are usually built
considering a single class. Consequenfl§f ROC curves
are considered. AUC is computed for each ROC curve,
and the global performance of the model is estimated by
the mathematical expected value of AUC, over all classes:
AUCiopar = S P(yi). AUC (y;)

E. Protocol

Beforehand, data is normalized using mean and variance.
At the beginning of experiments, the training set contains
only two labelled examples which are randomly chosen
among available data. At every iteration, a single example
is drawn in the current zone to be labelled and added to the
training set. Active learning stops when 250 examples are
labelled.



