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Abstract— Active Learning is an active area of research
in the Machine Learning and Data Mining communities. In
parallel, needs for efficient active learning methods are raised
in real-world applications. As an illustration, we present in
this paper an active learning challenge applied to a real-
world application named Nomao. Nomao is a search engine
of places. It aggregates information coming from multiple
sources on the web to propose complete information related
to a place. In this context, active learning is used to efficiently
detect data that refer to a same place. The process is called
data deduplication. Since it is a real-world application, some
additional constraints have to be handled. The main ones are
scalability of the proposed method, representativeness of the
training dataset, and practicality of the labeling process. The
website of the challenge remains open beyond the termination of
the challenge as a resource for students and researchers (http:
//www.nomao.com/labs/challenge) and to share that
problem with the community, the whole labeled dataset has been
delivered publicly to the UCI Machine Learning Repository
http://archive.ics.uci.edu/ml/datasets/Nomao)

I. BRIEF INTRODUCTION TO ACTIVE LEARNING

Active learning methods come from a parallel between ac-
tive educational methods and learning theory [1]. The learner
is from now a statistical model instead of a student. The
interactions between the student and the teacher correspond
to the opportunity for the model to interact with a human
expert. The examples are situations used by the model to
generate knowledge on the problem. Active learning methods
allow the model to interact with its environment by selecting
the more “informative” situations.

This paper restricts the active learning domain to the
machine learning paradigm1. The purpose is to train a model
which uses as few examples as possible. The elaboration of
the training set is done in interaction with a human expert
to maximize the progress of the model. The model must be
able to detect the more informative examples for its learning
and to ask to the expert: “what should be done in these
situations?”.

Two scenarios are possible if one considers the raw data
or the data descriptors. These two scenarios are adaptive
sampling [3] and selective sampling [4]. In the first case
[3] the examples are instantiations of the input variables of
the model. The active strategy is not restricted to a pool of
instances and can explore the entire space of variation of
the input variables, looking for areas to be sampled. The
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1The reader may find a more comprehensible survey on active learning
in [2].

Nomao problem described in the next section commands to
use the second case, selective sampling [4], where the model
observes only a restricted part of the universe materialized by
training examples stripped of label. Consequently, the input
vectors selected by the model always correspond to a raw
data. The image of a “bag” of instances for which the model
can ask for labels is usually used.

II. NOMAO - PROBLEM DESCRIPTION

Nomao2 is a search engine of places that ranks results
according to what you like and what your social network
members like. Its development raises many scientific issues:
extraction and structuralization of local content, query under-
standing and information retrieval, results ranking, personal-
ization and recommendations [5].

During its first step of content extraction, Nomao collects
data coming from multiple sources from the web and needs to
aggregate them properly. The first task consists in detecting
what data refer to the same place. To automate this dedupli-
cation process and avoid hand-coded functions to resolve the
various data inconsistencies, a Machine Learning method is
used. Being given a set of pairs of records labeled as referring
to the same place or not, a predictive model is built that is
then able to decide if two records should be merged or not.

One key challenge is then to find a relevant set of training
examples to be provided to the classifier. We reach here
the domain of Active Learning [6]. Since it is conducted
on real data, some specific issues are raised. The main
ones are scalability of the proposed active learning method,
representativeness of the training dataset, and practicability
of the labeling process.

A. Real-world issues

The Nomao dataset contains millions of examples. First of
all, the proposed method must be able to handle such high
volumes of data. It must also be able to perform a learning
phase on training data using only a small part of the entire
distribution. Indeed, the sampling of the dataset may not be
uniform since it could perhaps not cover the entire domain
space.

This is illustrated in Figure 1. An initial training dataset
(ID) of 29,104 examples, illustrated by the red circle (on
the left), had been built by hand by an expert of Nomao,
following his feelings. Then 1,985 examples have been drawn
randomly and labeled in order to create a test dataset (TD).
Besides, 100,000 examples have been randomly selected to

2http://www.nomao.com/



Fig. 1. Learning when test and train inputs can have different distributions

create an Unlabeled Dataset (UD). The entire distribution
(containing all data) could thus be the blue circle (global),
UD the green one (middle), and TD the grey one (right), that
could be disjointed from the red one of ID. So the results
obtained on the initial training dataset could differ from the
one obtained on the test dataset.

There are a lot of methods or statistical tests to examine if
test, train and unlabeled inputs have different distributions.
One simple way is to train a classifier where the train inputs
belong to a (imaginary) positive class and the test examples
to a (imaginary) negative class. If the classifier is robust
and able to separate the two distributions then the degree
of performances of this classifier is a good indication. In the
real-world problem presented in this paper, the distributions
are somewhat different: see Section II-C below.

The other important issue carried by this real-world appli-
cation is the practicability of the labeling process. Indeed,
with such high volumes of data, following the classical way
of running active learning (labeling examples one by one
and updating the model at each step) is unpractical. It is
too long and too time-consuming for the labeling expert.
So sets of examples must be proposed for labeling rather
than individual examples. That is known as the problem of
purchasing data labels in batch, and it has been shown in
[7] that in that case, the number of examples labeled at
each iteration of a procedure of active learning influences
the quality of the involved model.

At last, one feature of interest of the Nomao challenge is
that it involves a real human labeling of data from samples
selected by the competitors, contrary to other challenges
where the labeling phases have been simulated. We will see
in the analysis of the results on Section IV-C that this will
help us understand what is behind the different active phases
performed.

B. Data format

Available Nomao raw material is spots (places) descrip-
tions. A spot is defined by the following main features: name,
address, geolocalization (GPS), website, phone, fax, etc. (but
data may be wrong or missing). Consider for instance the
(partial) spot raw material provided in table I.

ID Name Phone Address GPS

1 La poste 3631 13 Rue De La Clef

59000 Lille France (50.64, 3.04)

2 La poste 0320313131 13 Rue Nationale

59000 Lille France (50.63, 3.05)

3 La poste 3631 13 r. nationale

national 59000 lille (50.63, 3.05)

TABLE I
NOMAO SPOT PARTIAL DESCRIPTION.

For data deduplication, we define an example as a compar-
ison between two spots. Comparison techniques depend on
the data type. For the geolocalization points, a geographical
distance is used. For other values, the following string com-
parison functions are used: levenshtein, trigram, difference,
inclusion, equality. Further details related to string compari-
son functions like levenshtein or q-gram can be found in [8].
And all details about this data can be found on the challenge
website http://www.nomao.com/labs/challenge.

As a consequence, a single example is defined by 118
comparison features. Its name is composed of the names of
the spots that are compared, separated by a sharp (#), as
shown in first column of table II. In addition, a specific
label is added corresponding to the final decision of data
deduplication. A label value is +1 if the concerned spots
must be merged, and -1 if they do not refer to the same
place.

Considering examples described in table I, the correspond-
ing (partial) examples for data deduplication are provided on
table II. We assume there that an expert has qualified spots
1 and 2 as being distinct, as well as spots 1 and 3 (label -1),
but spots 2 and 3 as being the same (label +1).

ID1#ID2 1#2 1#3 2#3

trigram(Name) 1 0.47 0.47

levenshtein(Phone) 0.3 1 0.3

levenshtein(Address) 0.78 0.52 0.74

distance(GPS) 0.99 0.99 1

label -1 -1 +1

TABLE II
DATA DEDUPLICATION EXAMPLES.

C. Data distribution

In standard supervised learning, it is commonly assumed
that the samples used for training follows the same probabil-
ity distribution as the test samples. However, this assumption
is not always satisfied in practice [9]. Dataset shift is present
in most practical applications, for reasons ranging from the
bias introduced by experimental design to the irreproducibil-
ity of the testing conditions at training time. The three main



topics covered by this domain are (i) domain adaptation
/ transfer learning; (ii) covariate shift adaptation and (iii)
multi-task learning.

A very simple way to analyze the difference between two
distributions is to use a robust3 classifier. The examples of
both distributions are described by the same explanatory
variables. A target variable is added on each distribution
where its value is ’+1’ for the first distribution and ’-1’ for
the second distribution. If the classifier is able to separate the
two distributions, then its performance is an indication on
the distance between the two distributions, and the variable
importance provides this indication explanatory variable per
explanatory variable.

This experiment has been conducted using the MODL4

approach which is a model selection method for classification
and regression, that has no last recourse to cross-validation,
yet performed well in recent benchmarks. Such methods have
been recently extended to the less studied problem of rank
regression. The methods used are Bayesian in spirit, but make
use of original data-dependent priors [10].

Table III gives the 5 variables which are the more different
between the train/test datasets and train/unlabeled datasets
used in this challenge. An averaging of selective naive Bayes
classifiers [11] obtains an Area Under the ROC curve (AUC)
of 0.954 and 0.996 respectively when trained to discriminate
the train/test distributions and the train/unlabeled distribu-
tions. These values, from our experience, indicate a strong
difference between the various distributions. So an active
strategy using a semi-supervised approach should be very
interesting to be tested.

Train / Test Train / Unlabeled

Var1 phone diff street number diff

Var2 phone levenshtein street number levenshtein

Var3 phone trigram street number trigram

Var4 street number trigram street number equality

Var5 geocode coordinates phone levenshtein

TABLE III
THE 5 MORE IMPORTANT VARIABLES (SORTED IN DESCENDING ORDER

OF RELEVANCE) TO DISCRIMINATE THE DISTRIBUTIONS.

III. INITIAL IN-HOUSE EXPERIMENTS

We report here the initial results of various active learning
approaches that has been tested on Nomao data. They are
all based on the use of boosting machine learning algorithm
[12], and the selection of examples closest to the margin re-
turned by the defined weak learners. Thus the active learning
methods focus on examples that maximize the uncertainty
about their label [13].

3robust in the sense that it has strong regularization term.
4This method guarantees that there is low probability of overfitting when

one use a classifier to determine whether two subsets of the data are
distributed differently

The first boosting algorithm that has been used is the
classical boosting of stumps [14]. Then three methods for
selecting examples have been considered:

1) one exploring the examples space, by selecting exam-
ples at random;

2) one exploiting fully the information coming from the
boosting algorithm by selecting the examples closest
to the margin;

3) and a last one mixing this exploitation of boosting with
a bit of exploration of the examples space by using a
random selection, weighted by the inverse distance to
the margin: this approach will be called wmargin.

Hence, the process to get new examples to be labeled has
the following steps:

1) learn on training data using the boosting of stumps
with 100 trials (boosting steps);

2) use the model learnt to predict on unlabeled data (UD);
3) for the margin approach: select the examples closest

to the margin;
4) for the wmargin approach: pick randomly the examples

with their probability of being selected proportional to
their associated distance to the margin.

As explained before, an initial (training) dataset had first
been formed by hand that contained 29,104 examples. This
dataset was cut randomly into 2 parts, in order to simulate the
random selection5. Then we got our 2 datasets created using
active learning. So finally we got the following 4 datasets:

1) init is the main one that contains 28,130 examples;
2) rand is the next one that picked randomly 974 exam-

ples;
3) marg contains 917 examples closest to the boosting

margin;
4) wmarg contains 964 examples selected at random

weighted by the distance to the margin.

A. Boosting stumps

Figure 2 shows how the testing phase is organized to
evaluate the interest of those active datasets.

Fig. 2. Testing the interest of active datasets (e.g. 1015 examples of dataset
init are misclassified by model MR).

5This way of selecting random examples will be improved in the next set
of experiments described in the next section.



Each dataset is cut into 10 parts to perform Cross Vali-
dation. For each test, 10 runs are thus performed, 9/10th of
the data being used for training (A) and 1/10th for testing
(E). Thus, in figure 2, IA corresponds to a training subset of
the init dataset, IE to a test subset of init, ME a test subset
of the marg dataset, and so on. Each active dataset (rand,
marg or wmarg) is then associated to the initial one (init) in
order to learn a model (called MR, MM or MW) using the
boosting of stumps with 100 trials. A reference model MI
based only on the initial dataset has also been computed. As
a result, predictions are computed on all test datasets (IE,
RE, ME and WE). Table IV shows the results that have been
obtained by that process.

test → init rand marg wmarg error

train ↓ (28,130) (974) (917) (964)

initial only (reference) 1006 30 505 432 6.37%

+ random (explore) 1015 29 515 438 6.44%

+ margin (exploit) 1043 33 243 234 5.01%

+ wmargin (compromise) 1062 32 248 230 5.07%

TABLE IV
NUMBER OF MISCLASSIFIED EXAMPLES WITH BOOSTING OF STUMPS,

DEPENDING ON THE ACTIVE LEARNING METHOD USED TO ENRICH THE

INITIAL DATASET FOR TRAINING.

We can thus observe that using active learning significantly
improves the accuracy of the predictions, since the error rate
decreases from more than 6% to roughly 5%.

The improvements are more significant on the examples
that are supposed to be more difficult to predict, since we
roughly divide by 2 the number of misclassified examples
on the marg and wmarg datasets.

We can also note that all active approaches degrade the
results on the initial dataset, and the approaches based on
boosting even more. This means that adding to the training
dataset too many difficult examples can affect the overall
accuracy of the model.

These results are very interesting, even if we were sur-
prised by the fact that picking random examples could
decrease performance. Indeed, in these experiments, random
is worse than initial, and wmargin worse than margin. This
behavior indicates that the random strategy has (by chance)
discovered a new “pattern” in the data which temporarily
degrades the performances.

B. Boosting trees

Considering last results, we decided to carry out new tests
with another boosting approach, based on the use of decision
trees C5 [15] rather than stumps. Table V shows the results
we got on the same datasets with this new algorithm, also
run with 100 trials. The reader could also find a relevant
reference in [16] for a tree-model strategy.

First of all we check here that the boosting of trees
has better results than the boosting of stumps on Nomao
data. Then we can observe that using active learning still

test → init rand marg wmarg error

train ↓ (28,130) (974) (917) (964)

initial only (reference) 466 10 251 266 3.20%

+ random (explore) 444 9 248 253 3.08%

+ margin (exploit) 496 11 101 129 2.38%

+ wmargin (compromise) 475 8 112 96 2.23%

TABLE V
NUMBER OF EXAMPLES MISCLASSIFIED BY C5, DEPENDING ON THE

ACTIVE LEARNING METHOD USED TO ENRICH THE INITIAL DATASET FOR

TRAINING.

significantly improves the accuracy of the predictions. But
now the approaches based on the exploration of the examples
space show improvements on the results. Indeed, the number
of misclassified examples is now lower with the random
approach than with the initial one, and the wmargin has lower
error than the margin one. The improvements are still more
important on the examples selected closest to the margin.

Also, the best results are now obtained using the wmargin
method. These results are more compliant to what is expected
in active learning. Indeed, providing a compromise between
exploration and exploitation has been shown to be important
in active learning [17]. That way, the model is refined
near to the decision boundaries, improving results on tricky
examples, but the rest of the examples space is also explored
in order to stay efficient on the rest of the dataset.

So the tests have been deepened in that direction: one new
dataset has been generated: wmarg5 contains 995 examples
selected using the random selection weighted by the inverse
distance to the margin provided by C5. We have also created
a new random dataset in order to observe its effect on the
error rate obtained on the initial dataset. That one contains
986 examples. So we will now use that one instead of the
previous simulated one. Table VI shows the results we got
on those new datasets, using C5 algorithm again.

test → init rand marg wmarg wmarg5 error

train ↓ (29,104) (986) (917) (964) (995)

initial only 474 119 247 267 499 4.87%

+ random 470 30 221 224 445 4.22%

+ margin 494 49 99 129 403 3.56%

+ wmargin 493 37 103 106 372 3.37%

+ wmargin5 513 36 159 145 198 3.19%

TABLE VI
NUMBER OF EXAMPLES MISCLASSIFIED BY C5, DEPENDING ON THE

ACTIVE DATASETS USED.

The reverse tests can also be conducted. Table VII shows
the results we got with C5 when using all data (full), or
using all except those of one active dataset. In that case,
the highest the error rate of an approach compared to the
full one, the most useful the corresponding dataset is to the



learning algorithm.

test → init rand marg wmarg wmarg5 error

train ↓ (29,104) (986) (917) (964) (995)

full 548 24 63 63 143 2.55%

no random 571 29 61 73 160 2.71%

no margin 540 26 85 74 160 2.68%

no wmargin 546 23 72 85 170 2.72%

no wmargin5 529 27 61 68 218 2.74%

TABLE VII
NUMBER OF EXAMPLES MISCLASSIFIED BY C5, DEPENDING ON THE

ACTIVE DATASETS NOT USED.

These results are still more compliant to what we can
expect from an active learning method. Each active dataset
helps handling better its own kind of data, since margin is
the best approach to handle the marg dataset, wmargin the
best for the wmarg dataset, and so on. Also, the random
dataset now helps improving results on all data, including
the initial one. At last, the overall performance of the system
has increased significantly since we decreased its error rate
to 2.55% using all data.

C. Discussion

This preliminary study has shown the difficulty of de-
signing efficient active learning approaches in real-world
applications.

We have shown that finding a good compromise between
exploitation of information coming from the model used, and
exploration of the examples space is not trivial. In particular,
we have shown that a special care must be taken on finding
active datasets that do not degrade the results of the model
on the initial training data.

These results indicate also that the performances could
be improved using better active learning methods or more
adapted learning machines.

IV. NOMAO CHALLENGE

To deepen that research of performing Active Learning
in Real-world Applications, a challenge has been organized,
from Friday, June 1, to Friday, June 15, 2012 (see http:
//www.nomao.com/labs/challenge).

This section describes at first the protocol that has been
set up for the challenge. We then present the baseline method
used to assess the results of the participants. Finally, the last
part of the section presents and discusses the results obtained.

A. Challenge protocol

999 new examples randomly selected were labeled by the
Nomao expert in order to increase the size of the test dataset
(TD) to 1,985 examples. The initial training dataset (ID) was
still composed of 29,104 examples, and the unlabeled dataset
(UD) of 100,000. The target variable was only provided to
the participants for the training dataset.

During the First Active Campaign, participants could train
a classifier using the training dataset (and the other datasets
if they wanted to use semi-supervised method), and they
returned us the predicted labels for the test dataset. These
predicted labels allied us to measure the improvement ob-
tained through active learning method. They also asked for
N (set to 100) example labels belonging to the unlabeled
dataset.

During the Second Active Campaign, they could train their
classifier using the training dataset (and the other datasets if
they wanted to use semi-supervised method), in addition to
the N examples for which they asked the label. Then they
returned us the predicted labels for the test dataset, while
asking, again, for N (100) example labels belonging to the
unlabeled dataset.

During the Final Test Campaign, they could train their
classifier using the training dataset (and the other datasets if
they wanted to use semi-supervised method), plus the 2×N
examples for which they asked the label, and they returned
us the predicted labels for the test dataset.

To obtain the final results we initially decided to rank
the participants according to the improvement of the AUC.
The goal was to have the best improvement thanks to
active learning AND to beat the baseline model. But the
participation of the challenge has been very low. Twelve
competitors registered to download and analyze the data
before the beginning of the first active campaign, but only
two competitors entered in the first active campaign, and
only one competitor achieved the complete process of the
challenge.

Why did we observe this behavior? When writing this
paper we do not have the answer, but we are investigating
the reasons: problem too difficult, not enough advertizing,
real-world issues? The ALRA workshop (http://www.
nomao.com/labs/alra), to be held at the ECML-PKDD
2012 conference, will be the opportunity to discuss with the
community about this point.

So at the end, the results have been analyzed in light of
the baseline model (revealed at the end of the challenge) and
the last in-house experiment.

B. Baseline method

Planning the purchase of new examples (in batch) is a
compromise between different steps which can be (i) a pre-
selection [18]; (ii) a diversification [19]; (iii) the purchase
of N labels; and (iv) the iteration evaluation [20]. These
steps include the dilemma between exploration [21] and
exploitation [22]. When the data are not purchased in batch
the reader may find in [23] a relevant reference for a random
selection baseline in applications.

The baseline method used to assess the performances of
the competitors is based on the use of a single classifier, naive
Bayes, and a simple active learning strategy. This baseline
method is very straightforward and could easily be applied
in the case where the labels have to be bought in batch.

The naive Bayes classifier comes from the software



Khiops6. This is a naive Bayes classifier where each variable
is weighted. The building phase of the weights of the vari-
ables is fully described in [11]. It includes two key steps: a
step of variable selection (Section 3.5) and an averaging step
(Section 6.2). The variable selection step allows the classifier
to avoid unnecessary variables or explanatory variables unre-
lated to the classification problem. The averaging step allows
weighting the variables. This classifier is a baseline classifier
in the sense that it provides only one separation. More
sophisticated classifiers, which incorporate several classifiers
(ensemble of classifiers) or linear separation, are known to
be better than this baseline classifier to elaborate an active
learning strategy [24].

The baseline active learning strategy used tries to combine
exploration and exploitation. After training the naive Bayes
classifier on the training data, the unlabeled dataset (UD) was
ordered using the predicted probability for the class ’+1’.
The instances (X) to be labeled have then been chosen as
described in figure 3 and correspond to a simple compromise
between exploration and exploitation.

Fig. 3. Position of the labels asked versus P(’+1’|X).

C. Results and discussion

During the challenge, the Nomao team has used the
method described in section III-B that is based on the
boosting of trees (wmargin5). The method employed by the
winner, T. Sun, is described in [25]. Table VIII shows the
AUC and error rate obtained by those 3 participants of the
challenge on the test dataset (TD) and on their own active
datasets (called AD).

T. Sun has clearly the best accuracy performances. In par-
ticular, he has shown very good results since the beginning,
since he already reached 7.3% error even before the first
active phase. But on the contrary, the other methods have
shown high improvements of their approaches when helped
with new active examples. The baseline method improved a
lot with the first active phase (decreasing error from 19.9%
to 9.6%), but much less on the second phase (from 9.6%
to 9.4%), when Nomao improved its results more regularly
(from 12% to 9% and then 7.5%).

6http://www.khiops.com

Method Baseline Nomao T. Sun

Active phase 1 2 3 1 2 3 1 2 3

AUC (%) on TD 94.88 97.86 97.94 98.07 98.16 98.21 96.29 96.31 96.33

Error on TD 19.9% 9.6% 9.4% 12% 9% 7.5% 7.3% 7.2% 7.2%

Error on AD 37.8% 32.5% ∅ 32.5% 45% ∅ 24.4% 8.5% ∅

TABLE VIII
RESULTS OF PARTICIPANTS ON THE TEST DATASET (TD) AND THEIR

OWN ACTIVE DATASETS (AD).

All participants have selected difficult examples for the
first active phase, since their errors were high on the corre-
sponding examples (between 24.4% and 37.8% error). Then
T. Sun selected examples on which he did much less error
(8.5%), whereas Baseline and Nomao methods continued
with high errors on their active examples (between 32.5%
and 45%).

To check the overall difficulty of the targeted active
examples, one may check the error of all methods on each
dataset. Table IX thus shows that the active data selected by
T. Sun and Nomao seem more difficult to predict than those
chosen by the baseline method.

Method Baseline Nomao T. Sun Average

AD1(Baseline) ∅ 8.5% 7.3%
8.6%

AD2(Baseline) ∅ 8.6% 9.9%

AD1(Nomao) 37% ∅ 24.7%
21.6%

AD2(Nomao) 18.6% ∅ 7%

AD1(T.Sun) 29% 38.4% ∅
23.5%

AD2(T.Sun) 16.7% 9.5% ∅

TABLE IX
ERROR RATE OBTAINED BY EVERY METHOD WHEN USING THEIR FINAL

VERSION ON THE ACTIVE DATASETS (AD) OF OTHER PARTICIPANTS.

The Nomao expert reported that many examples were
indeed difficult to qualify. Some of them were related to spots
for whom the address was not precise (only the name of the
town was available for instance). Pairs of spots could also
refer to distinct shops in the same commercial center, thus
having the same address, and sometimes also the same phone
number. The same case could arise with doctor’s surgeries.
Then post offices could also be tricky examples because
their names and phone numbers were the same, so only the
addresses were to make a difference.

Finally, table X shows the results of the 3 participants on
all test datasets presented in this paper. We validate here that
T. Sun has the best overall performances, and observe that
even if Nomao outperformed the baseline method on the test
set, Baseline had finally better overall results, since he got
lowest error rates on difficult datasets such as marg, wmarg
or wmarg5.



PPPPPPtrain
test init rand marg wmarg wmarg5 baseline nomao tsun

error
(29,104) (1,985) (917) (964) (995) (163) (167) (170)

full 568 108 61 65 152 11 22 26 2.94%

no random 572 115 59 65 156 11 21 25 2.97%

no margin 547 108 84 85 163 11 24 27 3.04%

no wmargin 570 110 69 79 167 12 26 25 3.07%

no wmargin5 525 105 73 74 269 12 27 28 3.23%

no baseline 570 109 55 65 155 13 24 27 2.95%

no nomao 577 107 54 64 148 10 24 27 2.93%

no tsun 564 105 57 61 149 11 22 26 2.89%

TABLE XI
FINAL NUMBER OF EXAMPLES MISCLASSIFIED BY C5, DEPENDING ON THE ACTIVE DATASETS NOT USED.

Method Baseline Nomao T. Sun

test 9.4% 7.5% 7.2%

marg 22.9% 24% 17.9%

wmarg 21.3% 22.4% 16.5%

wmarg5 33.1% 45.8% 26.3%

total 19% 22% 15%

TABLE X
ERROR OBTAINED BY EVERY METHOD WHEN USING THEIR FINAL

VERSION ON ALL DATASETS.

V. CONCLUSION

The task that has been tackled during that challenge was
especially difficult because the initial dataset had first been
formed by hand by the Nomao expert. The distribution of
the dataset was thus biased, so predicting labels on randomly
selected examples (test dataset) has not been trivial, and we
have shown that this has been even more difficult when faced
with examples selected near to the decision boundaries of
the classifiers (active datasets). We face here a real-world
situation.

Another aspect of the real-world anchor of this study
concerns the initial process for selecting examples to be
labeled. Datasets marg, wmarg, wmarg5 and rand have
been created sequentially, in order to develop the Nomao
deduplication system as fast as possible. On the other side,
datasets baseline, nomao and tsun have been generated in
parallel, in a real research process. Therefore, even if they
are both based on the same active learning paradigm, datasets
wmarg5 and nomao differ somehow.

Thanks to this study, the Nomao dataset has now grown
from 29,104 to 34,465 examples, and the classifier is much
more efficient in predicting labels, even for “tricky exam-
ples”. Indeed, looking at the first result line of table XI, we
can see that C5 has an error rate lower than 3% on the whole
dataset.

It can also be noticed that its error is much more important

on the wmarg5 dataset. This is especially obvious when
wmarg5 is not included in the training set but consid-
ered as a test set, since C5 then reaches an error rate of
269 / 995 = 27%. On the contrary, if this dataset is used,
the error is significantly decreased from 3.23% to 2.94%. In
fact, the active selection of examples using the wmargin5
approach is here the best to improve C5 results.

rand, marg and wmarg datasets also improve the results
of C5. baseline has not a significant influence. nomao seems
the best to improve results on the init dataset, but its interest
is not globally significant. And using tsun even decreases the
precision of C5.

If nomao does not help that much improving C5, it can
be because wmarg5 already did the job. And if tsun is not
helpful for C5, it can be because the active data requested by
T. Sun was mainly adapted to the machine learning model
he was using. In other words, we are probably observing
here that the relevance of the active learning process is
model-dependent.

Results reported in table XII confirm that assumption
since the active examples selected by nomao are indeed the
most effective to improve C5’s results. Then the baseline
active examples lead to better results than when tsun active
examples are used.

C5 (init) C5 (init+nomao) C5 (init+baseline) C5 (init+tsun)

240 148 155 185

TABLE XII
NUMBER OF TEST EXAMPLES (AMONG 1,985) MISCLASSIFIED BY C5,

DEPENDING ON THE ACTIVE DATASETS USED.

To validate this assumption and deepen this research,
we could now conduct this study again with the challenge
winner’s approach. We could thus at the same time improve
Nomao’s deduplication process and understand better how
the context of use of a machine learning method must
be taken into account when designing an Active Learning
method for a Real-world Application.



Besides, since the initial data is a large proportion of the
training data in the experiments, it would be interesting to
see if the results would change for a much lower proportion.

Note: The originality of the challenge lied in having a
human in the loop to label data: for each ”active complain”
the participants asked for a number the labels of a number of
unlabeled entries and a person actually labeled those. How-
ever, this also made the logistics complicated and prevented
the organizers from conducting more systematic experiments.
Overall, the main benefit of the project seems to have been
for the sponsoring company Nomao to have improved their
results and the release of the data for future research.

To share that problem with the community, the whole
labeled dataset has been delivered publicly to the UCI
Machine Learning Repository [26].
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