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Abstract— The labeling of training examples could be a costly
task in numerous cases of supervised learning. Active learning
strategies address this problem and select unlabeled examples
which are considered as the most useful for the training of
a predictive model. The choice of examples to be labeled can
be considered as a dilemma between the exploration and the
exploitation of the input data space. In this article, a new active
learning strategy that manages this compromise is proposed.
This strategy is based on a Bayesian formalism that minimizes
assumptions on data. An experimental validation is conducted
on a unidimensional dataset, the objective is to assess the
position of a step function from noisy examples. Our approach
is favorably compared to a ad hoc strategy : the probabilistic
dichotomy.

I. INTRODUCTION

Machine learning refers to a wide range of methods and
algorithms that allow a predictive model to learn behavior
by using observations. In practice, the collection and the
labeling of training examples could be a costly task for
numerous supervised classification problems. This cost can
be due to the requirement of a human expert, the use of
measuring equipment, or a prohibitive computation time.
Active learning strategies [1] select the unlabeled examples
which are considered as the most useful to build a training
set iteratively. An expert labels the selected examples. All
active learning strategies have the same objective : to label
the fewest examples as possible given a fixed performance
the predictive model has to reach. This article considers the
framework of selective sampling [2] where the predictive
model observes a finite subset of examples : the creation
of new examples is prohibited.

In this article, a new active learning strategy based on
a semi-supervised Bayesian discretization method [3] is
proposed. Section II briefly presents the semi-supervised
discretization method on which our approach is based. The
section III-A introduces the dilemma between exploitation
vs. exploration. Our active learning strategy is formalized in
Section III-B.

An experimental validation is conducted in Section IV. An
applicative framework is defined : i) the handled discretiza-
tion models include one or two intervals ; ii) the learning
problem to be solved is a binary classification ; iii) the
examples of the dataset are characterized by a single explica-
tive variable. Although restrictive, this framework constitutes
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a first application of the proposed method. Comparative
experiments which aim at detecting a step function from
noisy examples are also presented in Section IV. These expe-
riments show the behavior of our strategy and characterize
the influence of the level of labeling noise on the quality
of the predictive model. In this section, our approach is
favorably compared to a ad hoc strategy : the probabilistic
dichotomy [4].

II. SEMI-SUPERVISED BAYESIAN DISCRETIZATION

Notations : The data D includes two subsets L and U
that respectively correspond to labeled and unlabeled training
examples, with D = L∪U . The set L is composed by couples
(x, y), where x ∈ R and y ∈ Y is a discrete target value.
The set U includes unlabeled examples denoted by (x, ?).
The following notations are adopted : N , the number of
observable examples (N = |D|) ; N l, the number of labeled
examples (N l = |T |) ; J , the number of possible classes
(J = |Y|).

The active learning strategy proposed in this article is
based on a semi-supervised Bayesian discretization method
which comes from the MODL framework [3]. In the case
of semi-supervised learning, this method discretizes expli-
cative variables in order to estimate conditional densities
of classes. These estimated densities are supposed to be
piecewise constant functions. The MODL approach turns the
discretization problem into a model selection problem.

A family of feasible discretization models based on
the order statistic is defined. A discretization model
M(I, {Ni}, {Nij}) is defined by the following parameters :

– I is the number of intervals ;
– {Ni} is the number of examples in each interval
– {Nij} is the number of examples belonging to each

class, in each interval.
The parameters {Ni} specify the bounds of intervals through
the rank of explicative values, and the parameters {Nij}
characterize conditional densities by counting of each target
value in the interval i.

A Bayesian approach is applied to select the best dis-
cretization model, denoted by Mmap (Maximum a poste-
riori). The best discretization model maximizes P (M |D),
the probability of the model M given the data D. Exploiting
the Bayes formula and considering that P (D) is constant
over all possible models, this approach aims at maximizing
P (M)P (D|M). The prior distribution P (M) and the likeli-
hood of data P (D|M) are analytically developed exploiting



the discrete family of models. The employed Bayesian ap-
proach adopts very low informative hypothesis on data, this
is an objective Bayesian approach [5]. Eventually, theMmap

minimizes Equation 1.
The criterion Csemi super corresponds to the negative

logarithm of a probability, that represents a quantity of
information [6]. The first term corresponds to the choice of
the number of intervals, the second term describes the choice
of bounds locations. The third term represents the choice
of estimated distributions in each interval. The penultimate
term corresponds to the probability to observe values of
the predictive variable given the discretization model. The
last term can be interpreted as a penalty due to unlabeled
examples in each interval of the model (denoted by Nu

i and
Nu
ij).
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III. ACTIVE LEARNING

This section introduces active learning and underlines the
importance of the dilemma between the exploitation and
the exploration of the input data space. The active learning
strategy that we propose is formalized and presented in detail.

A. Dilemma between exploration and exploitation

During an active leaning process, the choice of examples
to be labeled can be viewed as a dilemma between the
exploration and the exploitation of the input data space
(denoted by X). The selection of an unlabeled example in
a non-sampled area of X contributes to explore the data.
In this case the space X tends to be uniformly sampled,
that potentially limits the areas on which the predictive
model is mistaken. The larger the dimension of X, the
more exploration of this space requires a large number of
labeled examples. The selection of an unlabeled example in a
sampled area of X contributes to exploit data. In this case, the
active leaning strategy focuses on an area already populated
with labeled examples, and locally refines the predictive
model. The dilemma between exploration and exploitation
can be illustrated by two extreme behaviors. On the one
hand, an active learning strategy that only exploits data may
ignore a large part of the input data space. The predictive
model will be specialized on some areas of X but it will be
definitely incorrect on the whole data space. On the other
hand, an active learning strategy that only explores data
does not focus on interesting area of X where the labeling
of new examples could improve the predictive model. In
such conditions, an active learning strategy represents little
interest compared to a random sampling. These two extreme

behaviors show that active learning strategies need to find
a compromise between exploration and exploitation. In the
literature, several approaches try to resolve this dilemma.
Three of the most common approaches are presented below.

1) Simultaneous use of multiple strategies: Several active
learning strategies can be jointly exploited in order to find
a compromise between exploration and exploitation. If we
consider two strategies which are respectively dedicated to
the exploitation and the exploration of data, such as the
uncertainty sampling [7] and the random sampling. At each
iteration, one of these strategies is used. The choice of
the strategy is probabilistic, p represents the probability to
explore the data and 1−p is the probability to exploiting ; the
probabilities are updated during the active learning process
and settle the compromise exploration vs. exploitation. T.
Osugi [8] draws a parallel with reinforcement learning. The
predictive model is considered as an “agent” able to carry
out two actions : explore or exploit data. At each iteration,
the agent executes one of these actions and receives an award
[respectively a retribution] if this action is appropriat [respec-
tively inappropriate]. A metric is used to assess changes of
the hypothesis that is learned by the predictive model : an
action is awarded proportionally to the observed changes.

Some heuristics comming from the combinatorial optimi-
zation can also be used to respond to the exploration vs.
exploitation dilemma. T. Zoller [9] exploits the simulated
annealing algorithm to adjust p over time. This heuristic is
inspired by the thermodynamics and decreases the probability
p according to a predefined function (also called cooling
schema). This heuristic condenses the exploration of the data
space at the beginning of the active learning process, and
exploits this space again using representative examples of X.

2) pre-clustering: H. Nguyen improves the uncertainty
sampling strategy [7] applying a pre-clustering on data, this
technique allows diversifying the labeled examples. Only
centroids of clusters are candidates to be labeled. Examples
which are assigned to a given cluster are supposed to
belong to the same class and the centroid is supposed to
be representative of these examples. H. Nguyen defines a
criterion that selects the centroid which most contributes
to the current error. The user changes the size of cluster
over time. The decrease of the sizes of clusters responds to
the compromise exploration vs. exploitation. When clusters
include many examples, the centroids are distant from each
other. In this case, this strategy mainly explores the input
data space. By contrast, when clusters include few examples
the centroids are potentially close to each other. In this case,
this pre-clustering based approach mainly exploits data. In
the same way as the simulated annealing [9], this strategy
explores the data more at the beginning of the active learning
process than at the end.

3) Use of similarity measure: Some active learning stra-
tegies manage the compromise exploration / exploitation by
measuring the dissimilarity between selected examples. Xu
[10] proposes a multi-criteria active learning strategy that is
applied to documentary research. This approach maximizes



the distance between the new example and the closest labeled
one : this strategy labels the examples the most distant from
each other. Brinker [11] presents a kernel based strategy that
uses dissimilarity measure. At each iteration, this strategy
labels the set of examples that most reduces the versions
space of the predictive model. Each unlabeled example
corresponds to a hyperplane in the prehilbertian space that
is induced by the kernel. This strategy selects the unlabeled
examples for which the corresponding hyperplanes are the
most distant from each other. An angle measure is defined
by exploiting the kernel trick.

Finaly, the 3 approaches presented above and the state
of the art [12, 13] underline that the compromise between
exploration and exploitation is a focal question in the active
learning field. The strategy that we propose in this article find
a compromise based on a Bayesian formalism that minimizes
assumptions on data. Our strategy does not require adjusting
user parameters.

B. A new strategy

This section presents an original active learning strategy
based on the semi-supervised discretization method that is
described on Section II. The quality of a discretization
model is given by the probability of this model given the
data. The criterion Csemi super is an analytical expression
of P (M |D), in the meaning of the modeling hypothesis
of the MODL approach [14]. Our strategy aims at labeling
the example that will maximize the quality of the future
predictive model, without knowing the label of the new
example and without knowing the best model of the next
iteration. Our approach takes into account these uncertainties
conducting an expectancy calculation over all possible cases.
A optimization criterion designates the example xt+1 ∈ U
that maximizes the expectation of P (M |D,xt+1) is defined.

Let P(.|D)(M) = P (M |D) be the posterior distribution
of discretization models given the data. Our strategy selects
the example xt+1 ∈ U that maximizes the expectation of
P (M |D,xt+1) over the family of models M :

ArgMax
xt+1∈U

E P(.|D)
M∈M

[P (M |D,xt+1)]

= ArgMax
xt+1∈U

X
M∈M

P (M |D)× P (M |D,xt+1)

The label yt+1 is not known, but the probability
P (y|M,D, xt+1) of the class y ∈ Y given the model and
the data can be estimated. Owing to the formula of total
probability, we write :

1)
P
y∈Y P (y|M,D, xt+1) = 1

2) P (M |D,xt+1) =
P
y∈Y P (y|M,D, xt+1)P (M |D,xt+1, y)

At last ,

ArgMax
xt+1∈U

X
M∈M

P (M |D)×

24X
y∈Y

P (y|M,D, xt+1)× P (M |D, xt+1, y)

35

This expression is developed ex-
ploiting the Bayes formula :

ArgMax
xt+1∈U

X
M∈M

264P (M)× P (D|M)

P (D)
×

X
y∈Y

24P (y|M,D, xt+1)×
P (M)× P (D, xt+1, y|M)

P (D, xt+1, y)

35
375 (2)

The joined probability P (D,xt+1, y) is developed :

P (D, xt+1, y) = P (D)× P (xt+1|D)× P (y|D, xt+1) (3)

The example xt+1 is considered as uniformly drawn from
the set U , a priori, all unlabeled examples have the same
probability to be selected. Consequently, the terms P (D)
and P (xt+1|D) of Equation 2 are constant under varying
the model M . This equation can be written as follows :

ArgMax
xt+1∈U

X
M∈M

264
Az }| {

P (M)× P (D|M)×
X
y∈Y

24P (y|M,D, xt+1)| {z }
C

×

Bz }| {
P (M)× P (D, xt+1, y|M)

P (y|D, xt+1)| {z }
D

35
375× Cste (4)

Where :
– The term “A” of Equation 4 is de-

duced by the criterion Csemi super :

P (M)P (D|M) =
1

N
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1
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u
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#
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– The term “B” is calculated by the same way, adding the
couple (xt+1, y) to the training set L.

– The term “C” is evaluated by the prediction of the model
M : the current model estimates the probability to obser-
ved the class y given the example xt+1. This prediction
is based on the proportion of examples labeled with the
value y in the interval which includes the example xt+1.

– The term “D” represents the probability to observe
the class y, given the example xt+1 and the data.
This term is difficult to assess because any particular
discretization model is involved. In order to estimate
this term, we choose to integrate the calculation over
the family of models M. Exploiting the total probability
formula [

P
M′∈M P (M ′|D) = 1], we can write :

P (y|D, xt+1) =
X
M′∈M

P (M
′|D)× P (y|D,M ′, xt+1)

=
X
M′∈M

P (D|M ′)P (M ′)

P (D)
× P (y|D,M ′, xt+1)

The probability of data P (D) is constant under varying
the model M .

Finally, the expectation of P (M |D,xt+1) is evaluated by
the criterion Cactive(xt+1) :



Cactive(xt+1) =
X
M∈M

264P (M)P (D|M)×

X
y∈Y

24 P (y|M,D, xt+1)× P (M)× P (D, xt+1, y|M)P
M′∈M P (M ′)× P (D|M ′)× P (y|D,M ′, xt+1)

35
375 (6)

IV. EXPERIMENTAL VALIDATION

In this section our active strategy is evaluated in a simple
case : the estimation of the location of a step function from
noisy examples [15]. This learning problem constitutes a
preliminary experimentation and highlights the behaviors of
our stategy compared to an ad-hoc method. In this particular
case, where examples are defined by a single explicative
variable and where the discretization model includes one or
two intervals, the criterion Cactive can be optimized with a
‘reasonable’ time complexity.

First, this section presents the considered dataset. Two
competitor strategies are considered : the probabilistic dicho-
tomy that is an ad-hoc method toward the detection of noisy
step function, and the random sampling strategy that gives
baseline results. Our experiments lead to several types of
results : (i) illustrative results that exhibit the behavior of our
strategy in term of selection of examples ; (ii) comparative
results that evaluate the performance of strategies depending
on the number of labeled examples.

A. Data

The exploited dataset contains 100 examples which are
uniformly distributed in the interval [0, 1]. The variation
domain of the explicative variable x is split into two parts
[0, θ[ and [θ, 1] where θ is the step location. The objective
is to "detect" θ from noisy examples that are potentially
mislabeled. The majority of training examples located in
the interval [0, θ] [respectively ]θ, 1]] belong to the class
’1’ [respectively of the class “2”]. The probability that an
example is mislabeled is denoted by p ∈ [0, 0.5]. The Figure
1 draws the probability to observe the class ‘1’ given the
value of x.

1

1
x0

P(y=1|x)

1!p

p

theta

Fig. 1. Step function : Probability to observe the class ‘1’ knowing the
value of x.

B. Rival strategies

1) Random strategy: The random sampling strategy uni-
formly selects the examples to be labeled. This baseline
strategy gives minimum performances and allows to estimate
the contribution of the two others strategies.

2) probabilistic Dichotomy: In [4] the authors generalize
of the dichotomy to the use of noisy examples. This ad-
hoc strategy is specialized in finding the location of a step
function, and assumes the level of noise is known. Algorithm
1 describes this strategy, the density of the step location is
denoted by Pθ(x). Initially no label is available. The density
Pθ(x) is initialized on step (I) adopting an uniform prior. At
each iteration, the unlabeled example x∗ ∈ U which ‘splits’
the distribution Pθ(x) in two equal parts is selected (Step
A). x∗ is the example which is the closest to the median of
Pθ(x). The label f(x∗) is sought from an expert (Step B)
and the couple (x∗, f(x∗)) is added to the training set L.
The density Pθ(x) is updated at each iteration exploiting the
new target valuef(x∗) (Step C). This step takes into account
the level of noise p.

Notations :
• Pθ(x) the a priori probability distribution of θ.
• p the probability that a label is false.
• A noisy step function, such as the interval [0, θ] [respecti-

vely [θ, 1]] contains a majority of examples which belong
to the class “1” [respectively to the class “2”].

• n the number of (desired) training examples.
• U and L the unlabeled and labeled set, with L ∪ U = Φ

• T the labelling budget, with |T | < n

/*initialization of L et U*/

L = ∅ et U = Φ

/*initialization of Pθ(x)*/

(I) Pθ(x)← 1
N
∀x ∈ Φ

Repeat
(A) Find the unlabeled example x∗ ∈ U such as :P
x∈[0,x∗] Pθ(x) = 1

2

(B) Request of the label f(x∗), add (x∗, f(x∗)) ? to L,
withdraw x∗ of U .
(C) Update Pθ(x) such as :
If f(x∗) = 1 then

(i) Pθ(x)← 2.p.Pθ(x) ∀x ∈ [0, x∗]
(ii) Pθ(x)← 2.(1− p).Pθ(x) ∀x ∈]x∗, 1]

end If
If f(x∗) = 2 then

(iii) Pθ(x)← 2.(1− p).Pθ(x) ∀x ∈ [0, x∗]
(iv) Pθ(x)← 2.p.Pθ(x) ∀x ∈]x∗, 1]

end If
until |T | < n

Algorithm 1: probabilistic Dichotomy

C. Illustrative Results

This section presents illustrative results of our stategy and
shows the changes of the criterion Cactive(xt+1) (Equation
6) over time. The selected examples are indicated as well as
their corresponding labels. The location of the step is fixed
at θ = 0.5.

1) Step without noise: Figure 2 shows the selection of
the examples during the first iterations of the active learning
process. On each sub-figure the vertical axis represents the



expectanty 1 of Cactive(xt+1) versus the location of the
candidate examples to be labeled. The maximum value of
each curve is symbolized by a “H” and corresponds to the
location of the selected example at each iteration. Labeled
examples belonging to the class “1” [respectively “2”] are
symbolized by a “•” [respectively “•” ].

Initially, there is no labeled examples. During the first
iteration (chart “A”, Figure 2), the criterion Cactive(xt+1)
reaches its highest values for xt+1 = 0 and xt+1 = 1. The
semi-supervised version of the MODL criterion (see Section
II) penalizes the unlabeled examples and thus generates the
selection of an example that is located on one end of the
interval [0, 1]. In case of equality, one of these two possible
examples is randomly chosen. Here, the example at xt+1 = 1
is labeled by the class “2”. At the second iteration (chart
“B”, Figure 2), the example xt+1 = 0 is labeled by the class
“1”. At the third iteration the curve seems to be flat (chart
“C”, Figure 2) but the criterion Cactive(xt+1) reaches its
maximum value at two symmetrical locations. The example
at xt+1 = 0.28 is selected and labeled. From these 2 labels
per class, our strategy adopts a behavior which seems to be
similar to the dichotomy. The charts D to F of the Figure
2 show next iterations. Our strategy converges and finds the
real location of the step by labeling 9 examples.

a) Noisy Step: The same experiments as Section IV-C.1
has been realized introducing a mislabeled example. In this
case our strategy adopts a behavior which has two principal
characteristics :

1) In a first period, our strategy tries to find the location of
the step ’around’ the noisy example. This behavior is
consistent since nothing presumes that a label is false.

2) Then the strategy “detects" the noisy example (the two
examples on each sides of the noisy example have been
labeled) and from here adopts the same behavior as
Section IV-C.1 (Figure 2).

Finally, our strategy adopts a correct behavior face to noisy
examples. The real location of the step function is determined
labeling 12 examples.

D. Comparative results

This section presents comparative experiments realized on
a step function, the step location is set at θ = 0.675. The
objective of these experiments is to evaluate the influence of
the level of labeling noise ( denoted by p) on the quality of
the predictive model. The performances of the three active
learning strategies are evaluated under varying p in the
interval [0.0 − 0.20]. All the active strategies are evaluated
using the same predictive model, therefore only the examples
selection influences one the results. The used predictive
model is the MAP model (Mmap) defined at Section II, this
model includes one or two intervals and has the choice to
split (or not) the variation domain of the variable x. The
AUC is used to compare the results of the three strategies
depending on the number of labeled examples.

1. The expectancy of Cactive(xt+1) is normalized such as its maximum
equals to be 1.

All the experiments have been done 100 times to obtain
a mean and a variance of the performance. Initially, there is
no labeled example L = ∅. At each iteration, one example is
selected and labeled. The experiments are stopped when the
budget of 20 labels is reached. By contrast with to the others
strategies, the probabilistic dichotomy has to be informed by
the level of noise p. Three cases have been considered below.

1) Case where the probabilistic dichotomy is correctly
informed by the level of noise: Figure 3 plots the AUC 2

(vertical axis) depending on the number of labeled examples
(horizontal axis). The 4 charts correspond to different levels
of labeling noise p = 0.0, 0.05, 0.10, 0.15. In each chart the
random strategy is plot by the red curve, the probabilistic
dichotomy is plot by the blue curve and our strategy is plot
by the green curve.

The first chart, where p = 0, can ben interpreted as
follows :

– The random strategy (red curve) has a constant AUC
that equals to 0.5 when |L|<12. In this case the MAP
model has a single interval and estimates the conditional
distribution of classes as uniform. Then, when |L| ≥
12, a sufficient number of labeled examples is present
to produce a MAP model which has 2 intervals. The
random strategy progresses and reach an AUC of 0.95
for L = 20.

– The strategy based on the probabilistic dichotomy has
the same behavior as the random strategy when |L|<12.
Then, when |L| ≥ 12, this strategy progresses very
quickly to reach the optimal performance since Mmap

has 2 intervals (|L| = 13). In the case where the noise
is null this strategy is the best one.

– Our strategy, based on the maximization of the expec-
tancy of P (M |D,xt+1), presents 2 interesting charac-
teristics : (i) it is better than the random strategy, (ii)
it needs less labeled examples to produce an optimal
model with 2 intervals (AUC>0.5 for L>10). This
strategy reaches the optimal performance for L=15 and
is (for p = 0) slightly less good than the probabilistic
dichotomy.

When the level of noise is known and null (a very favo-
rable case for the dichotomy) the 3 strategies are ranked as
follows : 1) the probabilistic dichotomy, 2) our strategy based
on the maximization of the expectancy of P (M |D,xt+1) and
3) the random sampling strategy.

This analysis can be done identically for the others charts
(p = 0.05, 0.10, 0.15). When the level of noise increases the
performances of the three strategies decreases. Our strategy
stays better than the random sampling for p = 0.05 and
p = 0.10. The probabilistic dichotomy declines clearly when
p increases. When the noise increases the number of labeled
examples required to obtain a Mmap with two intervals is
greater.

2) Case where the dichotomy is informed that p = 0:
Several other experiments have been realized in the case

2. Mean and variance of AUC are plot on Figure 3 over 100 repeated
experiments, with whiskers = ±2σ
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Fig. 2. Visualization of the positions of the labeled examples for the un-noisy step function.
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Fig. 3. Performances of the three active strategies vs. the number of labeled examples, in the case where the probabilistic dichotomy is correctly informed
of the level of noise.

where the probabilistic dichotomy is informed that p = 0
while p is varying. In this case, our strategy gives better
results and the gap increases when the level of noise in the
data increases.

3) Case where the dichotomy is informed that
pfalse ∈ [0, 0.20], even though p = 0: In the last
experiments the dichotomy is misinformed by pfalse
even though p = 0. In this case, the performance of the
probabilistic dichotomy are very low when pfalse reaches
0.1 : the MAP model (Mmap) includes a single interval

irrespective of the number of labeled examples.

To conclude, these experiments show that our active
learning strategy outperforms the probabilistic dichotomy, in
particular when the dichotomy is misinformed of the level
of labeling noise in data.

V. CONCLUSION AND PERSPECTIVES

In this article a new active learning strategy that is based
on a semi-supervised discretization method from the MODL



family [14] has been presented. This strategy selects the
unlabeled example which maximizes the expectancy of the
probability of the discretization models, given the data and an
additional example xt+1. Our approach leads to an optimi-
zation criterion, Casset(active)(xt+1). Our framework was
restricted here to unidimensional dataset and to models that
include one or two intervals. In the case of the detection of
a step location from noisy examples, our approach has been
favorably compared to a ad-hoc strategy : the probabilistic
dichotomy. The comparative experiments realized in Section
IV-D exhibits interesting results mainly when the level of
noise in not known. This result is promising for future
research.

Our active learning strategy could be exploited by other
learning methods which need a dichotomy on noisy data. To
elaborate decision tree, incremental methods use progressi-
vely the information in the training set [16]. These methods
do not allow the active selection of training examples to be
labeled. A binary tree would be defined using the criterion
Cactive presented in this paper. Further works on active trees
using our active strategy could be investigated.
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