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Abstract— Learning algorithms proved their ability to deal
with large amount of data. Most of the statistical approaches use
defined size learning sets and produce static models. However in
specific situations: active or incremental learning, the learning
task starts with only very few data. In that case, looking for
algorithms able to produce models with only few examples
becomes necessary. The literature’s classifiers are generally
evaluated with criterion such as: accuracy, ability to order
data (ranking)... But this classifiers’ taxonomy can dramatically
change if the focus is on the ability to learn with just few
examples. To our knowledge, just few studies were performed
on this problem. The study presented in this paper aims to
study a larger panel of both algorithms (9 different kinds) and
data sets (17 UCI bases).

I. INTRODUCTION

Learning machines have shown their ability to deal with

huge volumetry on real problems [1], [2]. Nevertheless most

of the works were realized for data analysis on homogeneous

and stationary data. Usually learning machines use data set

with fixed sizes and produce static models. However in

certain situations, the learning task starts with only few data.

In such cases finding algorithms able to produce accurate

models with few data and low variance is an advantage.

Active and incremental learning are the two main learning

problems where a learning machine able to learn with few

data is necessary. This study only focuses on supervised

learning.

Active learning [3] is used when lots of data are available

but labeling them is expensive (indeed labels are bought). In

that case the goal is to select the smallest amount of data

which will provide the best model. These data are expected

to be very expressive and an algorithm able to deliver an

accurate model with just few data is needed in order to avoid

buying more data.

Incremental learning [4] start to learn with few exam-

ples as it theoretically has to learn from the first provided

examples. The model is then improved as new examples

are arriving. The model quality at the beginning depends

on the algorithm capacity to learn fast with few examples.

Incremental learning research started a long time ago but it

recently reappears with data stream mining. Indeed numerous

software are generating data streams: sensor networks, web

pages access logs... These data arrive fast and are only

visible once. Therefore it is mandatory to learn them as soon

as they are arriving (on-line learning). Incremental learning

appears to be a natural solution to solve streams problems.
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An example is Hoeffding trees [5] which are widely used in

incremental learning on data streams. The tree construction

is incremental and nodes are transformed into leaves as

examples are arriving. Having a classifier in the tree leaves

[6] before they will be transformed, appears to improve the

tree accuracy. A classifier that can learn with few data will

provide a pertinent local model in the leaves.

The most used classifiers such as decision tree, neural

network, support vector machine... are often evaluated with

criterion such as accuracy, ability to rank data... But this

classifiers taxonomy can be completely different if the focus

is on their ability to learn with just few examples.

To our knowledge, the state of art presents only few

studies on the learning performance versus the size of the

learning data set: in [7] the performance on small and not

balanced text datasets is studied using 3 different classifiers

(Support Vector Machine (SVM), naive Bayes and logistic

regression). In [8], the authors focus on the learning time

contrary to this study which focus on the performance versus

the size of the training set. In [9] and in [10] the focus is

respectively on Parzen Windows and k nearest neighbor. In

[11] the construction of linear classifiers is considered for

very small sample sizes using a stability measure. In [12] the

influence of the training set size is evaluated on 4 computer-

aided diagnosis problems using 3 different classifiers (SVM,

C4.5 decision tree, k-nearest neighbor). In [13] the authors

look at how increasing data set size affects bias and variance

error decompositions for classification algorithms. The con-

clusions of these papers will be compared to the results of

this empirical study at the end of this paper.

The present work aims to study a larger panel both of

learning algorithms (9 different kinds) and data sets (17

from UCI). In a first part (section II) we will present the

classifiers that will be used in this study and their parameters.

The experimental protocol will be presented section III:

data sets, split between training and test sets, evaluation

criterion. Section IV will present the results and analyze them

depending on the typology of the classifiers. In the last part

we will conclude and propose future works related to this

study.

II. LEARNING SPEED AND CLASSIFIERS TYPOLOGY

A. Learning speed

Firstly this study does not focus on the bounds or conver-

gence time for a classifier given a training set of n examples.

This would correspond to determine the CPU time needed for

this classifier to learn n examples. In this study the “learning

speed” means the (minimum) number or training examples



a given classifier needs to obtain an “interesting” solution to

a problem. Figure 1 shows an example of two classifiers on

a same problem with two different learning speeds. X-axis

shows the number of examples (n) used to train the classifier

and Y-axis the AUC obtained (AUC=f(n)).
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Fig. 1. Illustration of the learning speed of two classifiers (AUC in testing)

This figure illustrates two different behaviors: the “red”

(+) algorithm reaches a better performance in a first stage but

then when n become larger the “blue” (◦) algorithm is finally

better. In order to always have the best model available, we

obviously have to use both models: at the beginning the red

(+) model and then the blue (◦) one.

This perfectly illustrates the purpose of this study: are

there better types of learning algorithms to learn on small

training data sets?

B. Typology of benchmarked algorithms

Different families of classification models based on learn-

ing parameters exist. They could be: (i) linear classifier for

which a hyperplane is learned (this kind of classifiers is based

on a linear combination of features such as y =
∑

j wjXj

where Xj represents a feature and wj its weight); (ii) non

linear classifiers such as multi layer perceptrons, k nearest

neighbors or decision trees.

Knowing that: (i) these families can partially overlap each

other; (ii) their placement is not always easy (a decision

tree can be seen as many hyperplanes - one for each leaf);

(iii) a linear classifier can deal with non linear classification

problem if a projection is done previously (the “kernel trick”

in SVM); (iv) sub families also exist. For example linear

classifiers can be dispatched into two big sub families to

estimate vectors parameters w:

• generative model is able to randomly generate instances,

based on an estimate of the joint probability distribution

over explicative variables and the target values. It uses

an estimate of the conditional probability P (X|C) and

the class probability P (C). The linear discriminant

analysis (LDA - [14]) and the naive Bayes classifier

[15] are examples of generative models.

• discriminative model is only interested in predicting

target values, and do not necessarily require statistical

modeling of the joint distribution. Linear regression,

logistic regression, perceptron and support vector ma-

chines are discriminative models.

Other classifiers can also be found: (i) probabilistic classifiers

which estimate conditional probabilities of classes given an

input vector (P (C|X)) constituted by combinations of ex-

planatory variables (this is not the case with many classifiers

as scores returned by support vector machines (SVM)); (ii)

parametric classifiers which assume that explanatory vari-

ables follow a probability law defined beforehand (a priori).

One example is the naive Bayes classifier when presupposing

that data follow Gaussian distributions [16].

This study can not cover all the classifier families but tried

to explore the space at best. Table I summarizes the tested

classifiers in relation to their families. These classifiers and

their parameters are presented in the following sub section.

Linear classifier Non linear classifier

Generative model
Naive Bayes, Bayesian network,

Selective naive Bayes nearest neighbor

Discriminant model
Logistic regression, Decision tree,

SVM Forest of decision trees

TABLE I

TYPOLOGY VERSUS BENCHMARKED CLASSIFIERS.

C. Benchmarked classifiers

In order to evaluate the classifiers presented in the previous

section (see Table I), two public software1 were used: WEKA

[17] (version 3.7.1) and Khiops [18] (version 7.0). All

algorithms were used without any prior knowledge. For both

software default values were mostly used (if not, parameters

which were tuned are described below) and results are

presented in section IV.

• Weka - Bayes

– Unsupervised [19]: standard naive Bayes. Numeric

estimator precision values are chosen based on

analysis of the training data.

– Supervised: same as before but a supervised dis-

cretization (MDL) is used to convert numeric at-

tributes to nominal ones.

– BayesNet [20]: Bayes network learning using var-

ious search algorithms and quality measures. Used

with default parameters: SimpleEstimator and K2

search algorithm.

• Weka - Nearest-neighbor [21]: uses normalized Eu-

clidean distance to find the training instance closest to

the given test instance, and predicts the same class as

this training instance.

• Weka - Regression:

– Logistic regression: multinomial logistic regression

model with a ridge estimator which is based on

[22].

1All experiments in this benchmark are reproducible.



– SVM: Support Vector Machine implementation by

[23]. The Weka wrapper is made by [24]. Parame-

ters used were: C-SVC for SVM type, 100MB for

cache size and “normalize” set to true. Two kernel

types were tried: linear and radial basis function

(RBF). A cross-validation was used to optimize

RBF parameters for all training set sizes.

• Weka - Trees:

– ADTree [25]: decision tree with many subtrees and

combined with boosting.

– J48 [26]: C4.5 decision tree proposed by Quinlan.

– SimpleCart [27]: binary tree based on the Gini

coefficient.

– Random Forest [28]: forest of random trees. Default

number of trees in the forest is 10. 40 was also tried.

• Weka - Vote: VFI [29]: classification by voting feature

intervals. Intervals are constructed around each class

for each attribute (basically discretization). Class counts

are recorded for each interval on each attribute and the

classification is by voting. The default parameters are

using the “weight feature intervals by confidence”. It

was also tried without it.

• Khiops2: a tool developed by Orange Labs. It imple-

ments, for supervised classification, a Naive Bayes and

a Selected Naive Bayes.

Naive Bayes or Selective Naive Bayes [30] were tested

with different pretreatments on numerical and nominal

attributes. On nominal attributes two pretreatments were

tested:

– Basic Grouping: a group per observed value

– MODL discretization [31]

On numerical attributes three pretreatments were tested:

– Equal Frequency

– Equal Width

– MODL grouping method [32]

The two unsupervised Equal Frequency and Equal

Width methods are used with a fixed number of bins

set to 10. If the number of observed values is below 10

the number of bins is reduced to the number of observed

data.

III. EXPERIMENTAL PROTOCOL

The experimental protocol aims to show the impact of

the training size on the learner performances. Firstly, data

sets are presented: they have different characteristics and

are recognized by the data mining community. Then the

training/testing split of the data sets is explained. Finally a

criterion which point up algorithms that learn well with few

data is presented.

A. Data set

Different data sets from the data mining community were

used in this study. We chose a panel of data sets from the

UCI repository [33]. Most of these data sets were already

2www.khiops.com

used for benchmarking classifiers in the literature. Data sets

with only nominal features, or only numerical features, or

a mix of both were used. Sizes are from one hundred to

many thousands examples. Table II presents the data sets

characteristics in terms of number of examples, number of

numerical and nominal features, accuracy of the majority

vote classifier.

This study only focuses on binary classification problems.

For problems with more than two classes the experimental

protocol should be different.

#Num. #Nom. #Exa. Maj.
Data set #Var feat. feat. (n) acc.

1 Adult 15 7 8 48842 0.7607
2 Australian 14 6 8 690 0.5550
3 Breast 10 10 0 699 0.6552
4 Bupa 6 6 0 345 0.5797
5 Crx 15 6 9 690 0.5550
6 German 24 24 0 1000 0.7
7 Heart 13 10 3 270 0.5555
8 Hepatitis 19 6 13 155 0.7935
9 Horsecolic 27 7 20 368 0.6304
10 Hypothyroid 25 7 18 3163 0.9522
11 Ionosphere 34 34 0 351 0.6410
12 Mushroom 22 0 22 8416 0.5332
13 Pima 8 8 0 768 0.6510
14 SickEuthyroid 25 7 18 3163 0.9073
15 Sonar 60 60 0 208 0.5336
16 Spam 57 57 0 4307 0.6473
17 Tictactoe 9 0 9 958 0.6534

TABLE II

DATASET CHARACTERISTICS

B. Split of the data sets into learning and testing sets

In order to generate small data sets and keep the widely

used 10 cross validations, first a 90%/10% split was used.

Then small training data sets were randomly drawn from

the 90% training set. The training data sets sizes are

taken from the following sizes: S = {S1, S2, ..., Smax} =
{

2, 22, 23, , . . . , 2(⌊log2(0.9n−1)⌋)
}

; where n is the original

size of the data set3. This draw was performed 10 times

for all data sets in order to obtain a mean and variance on

the result. The algorithm performance is evaluated on the

remaining 10% of the cross validation. Figure 2 illustrates

this protocol.
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Fig. 2. Data sets construction

30.9n come from the 10 cross validation.



C. Evaluating criterion: ALC

Those experiments give for each dataset an AUC curve

[34] on the test dataset versus the number of examples used

to train the learning machine. Each curve is constituted of

|S| points for all the learning machines as shown in figure

3.

Performances in prediction were evaluated with Area

under the Learning Curve (the ALC criterion is proposed in

[35]). The AUC (Area Under the ROC Curve) is calculated

for every point (2, 4, 8...) defined in the data set. The obtained

score corresponds to the normalized ALC calculated as

follow:

score =
(ALC −Arand)

(Amax−Arand)

where Amax is the area under the best achievable learning

curve (i.e. 1) and Arand is the area under the learning curve

obtained by random predictions (i.e. 0.5).

This criterion has good properties considering the goal of

this benchmark. Indeed this criterion emphasizes the AUC

on smaller subsets, what is especially the focus of this study.

The x-axis is logarithmic which means that the AUC for 2

examples will contribute to the ALC as much as the AUC

for 4096 examples.
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Fig. 3. ALC computation: area under AUC curve

IV. RESULTS

This section presents the study results. The notations used

are first described, then tables and curves are presented,

finally they are analyzed and an interpretation is proposed.

A. Notations

In order to show compact results, we had to use ab-

breviation for algorithm names. The first part of the name

represents the software used: “W” for algorithms in Weka

and no prefix for those which came from Khiops. The name

of the tested algorithm constitutes the second part of the

abbreviation. The following list gives the meaning of all

abbreviations:

• Weka

– W-ADT: ADTree

– W-BN: BayesNet - Bayesian network

– W-IB1: Nearest-neighbor

– W-RegLog: logistic regression

– W-NB-NS: non supervised naive Bayes

– W-NB-S: supervised naive Bayes

– W-RF10/40: Random Forest with 10/40 trees

– W-VFI / W-VFIn: VFI with/without option “weight

feature intervals by confidence”

– W-SCart: SimpleCart

– W-SVM-Lin/W-SVM-RBF: SVM with a lin-

ear/radial basis function kernel type

• Khiops. The format is Algorithm – Cont Var – Nom Var

– Algorithm - NB: Naive Bayes or SNB: Selective

Naive Bayes

– Cont Var for continuous variables - EF: EqualFre-

quency / EW: EqualWidth / M: MODL

– Nom Var for nominal variables - BG: Basic Group-

ing / M: MODL

B. Tables and curves

1) Tables: The ALC performances obtained by the differ-

ent algorithms on all data sets are presented in table III. The

last line gives the averaged ALC on all data sets for a given

algorithm. In order to have a more synthetic view, table V

shows the averaged rank, averaged ALC and averaged final

AUC (AUC on the largest training set: 2(⌊log2(0.9n−1)⌋)).

As this study focuses on learning from small data sets,

the beginning of the AUC curve is particularly interesting.

To highlight it, ALC is calculated just between 2 and 26

examples so that the ending of the AUC curve is ignored.

These results are presented in table IV which is similar to

the previous one (table III). The computation was done in the

same way for the ranks. The results are presented in table

VI.

The results variances are shown using a box plot per

algorithm on figure 5.

2) Curves: Four curves were chosen to show the perfor-

mances of different algorithms. The idea is to compare the

behavior of a particular algorithm with the best algorithms

in this study. The comparison is done on data sets adapted

to this particular algorithm in order to observe how the best

algorithms perform in that case. The best example is the

figure 4(d) which shows a data set working very well for the

logistic regression but not that well for the naive Bayes.

C. Analysis

1) Global analysis: This study was done without a fine

tuning of the algorithms’ parameters but mainly using their

default values. C4.5 (J48), CART (SimpleCart) and SVM are

references in data mining but this study shows that they don’t

perform well on small datasets. Indeed they have the worst

averaged ranks and worst averaged ALCs.

On the contrary, naive Bayes algorithms are known to

perform well on small datasets [36]. Figures 4(a) and 4(b)

confirm it. Very rapidly the generated classifiers perform

well. After seeing around 25(32) to 28(256) examples they

are almost at their maximum accuracy. Even if naive Bayes

classifiers perform better than C4.5, they are not the best on

the smaller datasets.
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Fig. 4. AUC versus the size of the training set (log2)
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Algorithm Avg rank Avg ALC Avg final AUC

W-RF40 3.65 59.26 91.30

NB-EF-BG 4.65 56.25 88.04

NB-EW-BG 6.59 55.27 86.82

W-VFI-N 6.94 55.33 83.13

NB-EF-M 7.24 54.55 88.04

W-RF10 7.29 55.56 89.70

W-BN 8.53 53.88 87.36

W-NB-S 8.82 53.89 87.35

NB-EW-M 9.18 53.57 86.80

W-RegLog 10.94 52.11 88.55

W-ADT 11.24 51.01 88.66

W-NB-NS 11.29 50.51 87.09

NB-M-BG 12.53 49.93 86.81

W-VFI 13.94 48.86 82.04

SNB-EF-BG 15.76 46.96 88.15

SNB-EW-BG 16.35 46.59 87.06

NB-M-M 16.65 46.83 86.84

SNB-EF-M 16.94 46.54 88.20

SNB-EW-M 17.47 46.17 86.99

SNB-M-BG 17.53 44.97 87.07

SNB-M-M 18.94 44.46 87.19

W-IB1 20.59 37.82 78.07

W-SVM-Lin 20.65 37.02 76.44

W-SVM-RBF 20.71 37.25 81.51

W-J48 22.18 38.74 82.84

W-SCart 24.41 31.95 81.70

TABLE V

AVERAGED RANK, AVERAGED ALC AND AVERAGED FINAL AUC

Algorithm Avg rank Avg ALC Avg final AUC

W-RF40 4.35 47.10 86.21

W-VFI-N 4.65 47.50 82.43

NB-EF-BG 4.65 45.88 83.45

NB-EW-BG 5.41 45.55 82.34

W-RF10 6.88 43.26 84.09

NB-EF-M 7.65 43.01 83.29

NB-EW-M 8.47 42.72 82.12

W-BN 9.41 41.94 81.58

W-NB-S 9.47 41.92 81.28

W-RegLog 10.00 40.19 79.98

W-VFI 10.53 40.55 77.91

W-NB-NS 11.88 37.22 82.60

W-ADT 12.24 36.43 83.02

NB-M-BG 12.76 36.85 80.92

SNB-EW-BG 16.88 31.40 81.93

SNB-EF-BG 17.18 30.77 82.44

NB-M-M 17.59 31.60 80.29

W-SVM-Lin 17.59 30.05 72.97

SNB-EW-M 18.24 30.79 81.76

SNB-EF-M 18.59 30.09 82.20

W-IB1 18.71 29.49 72.46

SNB-M-BG 19.59 28.65 80.18

W-SVM-RBF 19.82 25.67 72.98

SNB-M-M 21.35 27.71 80.12

W-J48 21.94 24.80 74.14

W-SCart 25.18 15.66 70.52

TABLE VI

AVERAGED RANK, AVERAGED ALC AND AVERAGED FINAL AUC WITH

AREA BETWEEN 2 AND 2
6
= 64 EXAMPLES DURING TRAINING

Tree classifiers do not perform well out of the box (C4.5,

Cart), but surprisingly in combination with bagging/boosting

techniques they are the best of this study: Random Forest.

Figure 4 shows Random Forest (with a forest size of 40: W-

RF40) results on four datasets. W-RF40 is the overall best

classifier in this study. The data sets Crx and TicTacToe on

sub-figures 4(c) and 4(d) are favorable to naive Bayes and

logistic regression, but even on them Random Forest is still

performing well. In a general manner its performances are

better than the other classifiers on most of the data sets.

It is surprising to discover a pretty unknown classifier close

to the top of this study: VFI - a vote by majority based on

a discretization technique. This algorithm is working pretty

well without using the option “weight feature intervals by

confidence”: W-VFI-N. If the learning phase is stopped after

the first 64 examples (Table VI), W-VFI-N is first on ALC

and is ranked second.

2) Discriminative models analysis: Discriminative algo-

rithms are represented in this study by the Random Forests

(W-RF and W-RF40), the logistic regression (W-RegLog)

and SVM (W-SVM-Lin, W-SVM-Log). The Random Forest

algorithm set up with a size of 40 trees is the best performer

in this study on all aspects: rank, averaged ALC and averaged

final AUC. This algorithm ability to try numerous trees with

just few features gives good results both at the beginning and

at the end of the learning phase.

Even if the logistic regression is positioned after Random

Forest, naive Bayes and VFI, its ALC score is not that far.

In certain cases it is even much better than all the others

classifiers as shown on the figure 4(d) for the TicTacToe

date set.

Support Vector Machines (SVM) are not performing well

on small data sets. Linear SVMs are a bit better than RBF

ones but still their performances are one of the lowest in this

study. These results are surprising and further experiments

should be conducted to double check them.

3) Generative models analysis: Among the generative

models tested in this study, naive Bayes are the most eval-

uated. The methods used to discretize continuous variables

and grouping nominal variables have a great influence on the

results. The best choice is constituted by the pairs (“Equal-

Frequency”, “Basic Grouping”) followed by (“EqualWidth”,

“Basic Grouping”). The regularized discretization [30] and

the MODL grouping method [32] are too robust to be able to

build a model with just few examples. Regularized methods

(MODL approach and selective naive Bayes) are known to

have low bias-variance [37]. Therefore, in order to maintain

this low bias-variance, their variance but also AUC will be

lower on the smaller datasets. This statement is confirmed as

the AUC increases later: the classifier is more conservative

and prefers not to make highly variable predictions. This

robustness makes these classifiers to have a lower score but

still they are better than C4.5 or Cart. In this study “simpler

methods” have the advantage to more rapidly find patterns

and give better results.

Bayesian network represents non linear generative model



(see table I) in this study. It behaves relatively well but they

are just below Random Forest, VFI and naive Bayes. On few

data sets: Adult and Mushrooms (figure 4(b)), it is the best

classifier in terms of ALC.

4) Comparisons with existing analysis: The results in the

literature are confirmed in this study. A ranking could be

proposed:

• Generative classifiers are better than discriminative clas-

sifiers when the number of examples is low [38] and

when only one classifier is used.

• Ensemble of classifiers performs very well [39]: bagging

[40] of discriminative classifiers performs very well and

allows to have a reduced variance (compare to an only

one discriminative classifier). In this study, the bagging

of discriminative classifiers performs better than a single

generative classifier.

• Ensemble of generative classifiers [41] has to be tested

and compared to ensemble of discriminative classifiers.

• Regularized methods are robust [37].

Few studies on the learning performance versus the size of

the learning data set have been identified in the introduction

of this paper. This paragraph seeks if our empirical study

conclusions are confirmed.

In [7] the training size and class distribution vary but they

are using a different measure: the learning surface, different

from the traditional learning curve used in our study. In

[8], the authors focus on the learning time contrary to this

study which focuses on the performance versus the size of

the training set. Therefore both of these studies can not be

compared with ours.

In [10] the focus is on the k nearest neighbor. Experimental

results show that the nearest neighbor classifier designed

on the bootstrap samples outperforms the conventional k-

NN classifiers, particularly in high dimensions. Since the

bootstrapping method used is closed to the bagging pro-

cedure their conclusion does not enter in conflict with our

recommendations. In [11] linear classifiers are considered

for very small sample sizes using a stability measure. One

conclusion of their paper is: if classifiers become instable for

small sample sizes, a general stabilizing technique like bag-

ging could improved classifier performance. This conclusion

is in accordance with the empirical study presented here.

In [12] the influence of the training set size is evaluated

on 4 computer-aided diagnosis problems using 3 different

classifiers (C4.5, Linear and RBF SVM). They observe that

classifier results on small data sets should not be generalized

to larger. Their empirical results suggest that, given sufficient

training data, SVMs tend to be the best classifiers. In [13]

the authors study how the data set size affects bias and

variance error decompositions for classification algorithms.

The paper conclusion is in two parts. The first one indicates

that there is no clear effect of training set size on bias. This

is confirmed in our study since the mean rank does not really

change between Table V and Table VI. The second part of

the conclusion is that variance can be expected to decrease

as the training set size increases. This second part confirms

our results. Moreover the bagging procedure is able to reduce

this variance [40].

5) Recommendation: The study presented in this paper

recommends that few algorithms could be used to build a

model on small training data sets: random forest and the

naive Bayes classifier. Both these algorithms need to be pa-

rameterized to reach their best performances. The association

(“EqualFrequency”, “Basic Grouping”) and (“EqualWidth”,

“Basic Grouping”) are the best ones for the naive Bayes and

a size of 40 trees for “Random Forest”. If we only focus

on the early learning stage, a method using vote on intervals

(VFI) is ranked as the best methods in this study.

V. CONCLUSION AND FUTURE WORKS

A. Towards a new criterion?

We previously presented our results in two tables: one

containing the results of the area under the AUC curve

(ALC) finishing at 26 examples (table VI) and another one

containing the final AUC (table V). The first table shows

the algorithms behaviors at the early learning stage and the

second one its performance at the end. On figure 6 the two

axis use these two evaluating criterion. On average only “W-

RFxx” and “NB-EF-BG” manage to be well positioned on

these two criterion. Logistic regression and trees boosting

(ADTree) have good final performances but there ALC64 is

relatively low. On the contrary “VFI” is good on this criterion

but its final AUC is not that good.
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Fig. 6. Positioning of the different algorithms in terms of ALC
26

and
AUCfinal (to avoid text overlapping the classifiers NB-EF-M, NB-EW-M,
NB-M-BG, NB-M-M, SNB-EW-M and SNB-M-BG are omitted)

This analysis let us think that the ALC criterion could be

replaced by a new criterion which would take into account

both of these aspects. Indeed, it would be interesting to

have a synthetic criterion allowing us to evaluate algorithm

performances on these two axis. This criterion could be

written as follow:

Criterion =
ALC26 +AUCfinal

2



B. Algorithms combination

In this study very few cases were found where a particular

algorithm is very good on the early stage and another one is

very good at the end of the learning phase. However if we

would be in such situation as it is shown on figure 7, it would

be interesting to use two different algorithms: W-VFI-N for

the 28 first examples and then a selective naive Bayes at the

end.
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Fig. 7. A data set (Adult) where using 2 algorithms could be beneficial
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