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The aim of this paper is an application of neural networks to Connection Admission
Control (CAC) in an ATM network. We propose a method to estimate if, and for how
long, an ATM node is in a state of congestion. We show that estimations with neural
networks are accurate, need a small observation of the traffic and can therefore react
quickly to traffic changes.

1. Introduction

ATM (Asynchronous Transfer Mode) is a high speed network, able to transfer vari-
ous communication services such as video, voice and data. The basic concept of ATM
communications is that all users can send traffic (stream of cells) to any ATM node on
demand, at a chosen rate (bandwidth) and with an arbitrary timing. In such networks
the traffic characteristics can have high variability. Therefore, it is difficult to build an
efficient traffic control (preventive or reactive) system able to guarantee the quality of
service (QoS), measured by parameters such as cell time delay and cell loss probability.

Connection Admission Control (CAC) is a preventive traffic control. A user is allowed
to establish a connection only if the network considers that the new connection will receive
its required QoS and that this admission will not degrade the QoS of all the users already
connected below their respective requirements [1]. Before communication, the user has
to send a connection setup request to the traffic controller of the ingress node. The
connection setup request specifies the QoS values it requires and its traffic parameters.
These parameters define the traffic characteristics of the connection. The capacity of each
node is a function of the traffic parameters and the QoS of all connections going through
the node. Therefore the ATM network must estimate the post connection QoS (with the
new connection) from these parameters for all the nodes used by the new connection. It
accepts the new user only when the estimated value of the QoS does not violate the QoS
requirements for all current users; otherwise the request is rejected.

A number of different ATM transfer capabilities have been defined by the ITU and by
the ATM forum [2]. Among these capabilities, we shall consider the ATM Block Transfer
(ABT) capabilities, where the user must be able to define and control a block structure
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in its data stream. A Maximum Peak Cell Rate (PCR) is declared for the connection
duration and a Block Cell rate (BCR), is negotiated for each block between the user and
the network. All BCR are lower than the PCR . Only the PCR is used in the CAC
procedure.

With this capability, the occupied bandwidth cannot be known in advance because
the reservations are made dynamically block by block by all current applications already
connected and can therefore have a large variability.

2. The Connection Admission Control policy

We present a MBCAC (Measurement Based Connection Admission Control) using neu-
ral networks, adapted to the ABT mode. Instead of predicting the future occupied band-
width, we only predict the probability that future blocks sent by the sources could become
congested in the ATM node for a given time. The maximum required accuracy for such
blocking probabilities is about 10−4.

Let us define an excursion θ as the period
of time during which the traffic already ac-
cepted, B(t), is above a threshold s:

B(t) ≥ s (1)

and its length (or duration) T is denoted by
:

L{B(t) ≥ s} = T (2)
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Figure 1. Définition of an excursion

Let us define a ratio η (“time with excursion”/“time without excursion”) such as :

η = Pr(B(t) ≥ s|n) (3)

The probability that an excursion has a length T is therefore defined such as:

Pr(L(θ) ≥ T |s, n) = Pr(L(B(t) ≥ s) ≥ T |s, n) (4)

with :

• θ : the excursion of B(t) above the threshold s ;

• L(θ) : the duration of this excursion ;

• n : the number of sources ;

• s : the threshold.
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Denote Bmax the bandwidth available at the ATM node. The acceptance decision for a
call with a maximum declared PCR of dmax is made by adding the new connection (sup-
posed to emit at dmax) “on top” of the current traffic B(t) and estimating the distribution
of the excursion lengths above Bmax for the aggregate traffic : B(t) + dmax ≥ Bmax. This
is equivalent to estimate the distribution of the excursion lengths of the current traffic
B(t) above the threshold s = Bmax − dmax.

The estimated ratio η allows us to know if an ATM node will be in a congestion state
and the estimated distribution probability of the excursion lengths the duration of this
state. The connection is accepted if both the ratio and the excursion length are small
enough.

The scheme relies on two characterisations, a characterisation of the new connection
and a characterisation of the behaviour of the occupied bandwidth.

As the new connection is accepted on the basis of its PCR (the post connection excur-
sions are evaluated as if the new source would always send at its peak rate), this scheme
is conservative. However, it is based on measurements of the pre-connection occupied
bandwidth, hence allowing to benefit from the statistical gain that occurs through the
multiplexing of the sources already accepted.

With four excursion lengths at fixed probability we can have an estimation of the
distribution of the excursion lengths.

T1(s, n), T2(s, n), T3(s, n), T4(s, n), η(s, n),
are defined such as :

T1(s, n) = Pr(L(B(t) ≥ s) ≥ T1|s, n) = 10−1(5)

T2(s, n) = Pr(L(B(t) ≥ s) ≥ T2|s, n) = 10−2(6)

T3(s, n) = Pr(L(B(t) ≥ s) ≥ T3|s, n) = 10−3(7)

T4(s, n) = Pr(L(B(t) ≥ s) ≥ T4|s, n) = 10−4(8)

and

η(s, n) = Pr(B(t) ≥ s|n) (9)
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Figure 2. The estimation of the distri-
bution of the excursion lengths.

Our goal is to estimate T1(s, n), T2(s, n), T3(s, n), T4(s, n) and η(s, n) with s = Bmax −
dmax, using neural networks.

3. The traffic burst model

We want to learn the relation between the observed traffic and the distribution probabil-
ity of the excursion lengths. A calculation of the distribution probability of the excursion
lengths can be made analytically only in the limit of an infinitely large number of sources
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[3]. As we do not have a sufficient number of traffic traces, we need a traffic model to
constitute a data base. This parametric model is just used to build the traffic data base
but the parameters will not be used during the training of the neural networks, since our
goal is not an identification of the parameters of the traffic but a direct estimation of its
behaviour in terms of excursion lengths. The methodology detailed below can therefore
be applied to any traffic data base.

The traffic carried by an individual link is assumed to be produced by independent
on/off sources. During the burst period (on), the source transmits traffic, at a constant
characteristic cell rate, otherwise the source is silent (off). According to [4] the on/off
sources represent the “worst case” output of the traffic enforcement function. Hence,
if the connections are represented by on/off sources, the performance analysis will be
conservative.

To simulate the occupied bandwidth B(t), we use a superposition of a known number
n of Markov Modulated sources. The source behaviour is defined by the peak cell rate,
the average active and silence periods (respectively TON , TOFF ), or equivalently by :

• p00 the probability to remain in an active period ;

• p11 the probability to remain in a silence period ;

• Rj(t) the cell rate for each source.

The occupied bandwidth is defined by the aggregate traffic :

B(t) =
n

∑

j=1

Rj(t) (10)

If we have a sufficient number of samples the probability can be estimated from the
frequency on a given time window. Therefore :

Pr(L(θ) ≥ Ti|s, n) ∼

∑K
t=0

(

L
(

∑n
j=1 Rj(t) ≥ s

)

≥ Ti

)

∑K
t=0

(

L
(

∑n
j=1 Rj(t) ≥ s

)) (11)

and

η ∼

∑K
t=0

(

∑n
j=1 Rj(t) ≥ s

)

K
(12)

with K the estimation period.
A simulation (see figure 3) of the aggregate traffic was built with this traffic burst

model. This simulation is based on a limited available bandwidth (Bmax) at the output
link.

For Bmax = ∞, the results of the estimation of the distribution of the excursion length
was reported in [5]. Because of the limited bandwidth, the incoming traffic blocks may be
stored temporarily in a memory buffer. Each traffic source, in this adaptative simulation,
has a dedicated buffer whose size is fixed at two blocks. To decide which source can
start the emission of its block, a random choice is made then the chosen sources become
prioritary for the duration of its block. This allow each block to be sent within a finit
time. All the prioritary sources are then multiplexed and provide the aggregate traffic
B(t).
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Figure 3. The traffic simulation.

4. The database

Traffic was generated according to this model for the homogeneous case (all source
have the same activity parameters and peak rate taken as the bandwidth unit), for various
activity parameters and numbers of sources. This traffic database generated by this model
was divided in three subsets such as :

• Training set :

– p00 = 0.15 + o · 0.1 ; p00 ∈ [0.15 − 0.85]

– p11 = 0.10 + p · 0.1 ; p11 ∈ [0.10 − 0.90]

– n = 10 + q · 3 ; n ∈ [10 − 26] ∪ [28 − 80]

• Validation set :

– p00 = 0.10 + o · 0.1 ; p00 ∈ [0.10 − 0.90]

– p11 = 0.10 + p · 0.1 ; p11 ∈ [0.10 − 0.90]

– n = 10 + q · 3 ; n ∈ [10 − 26] ∪ [28 − 80]

• Test set :

– p00 = 0.15 + o · 0.1 ; p00 ∈ [0.15 − 0.85]

– p11 = 0.15 + p · 0.1 ; p11 ∈ [0.15 − 0.85]

– n = 10 + q · 1 ; n ∈ [10 − 80]

• o, p, q ∈ IN+ , t ∈ IN.

The training set is used to train the neural networks and the validation set allows to
monitor the generalization capacity of the networks during the training process. The test
set is never used during the training and only serves for performance evaluation purposes.

For each set of parameters (p00, p11, n) 95.106 time steps of traffic (K) were generated
to have a good precision on the Ti(s, n) and η(s, n) (see figure 4). The thresholds s are
in percentage of the maximum available bandwidth and ∈ [0:100].
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The number of examples used for the three
subsets is, for T1 (Bmax=50) :

• Learning set : 72812

• Validation set : 37031

• Test set : 59766
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Figure 4. An example for the Ti :
p00=0.15, p11=0.60, n=50, Bmax=50.

5. Excursion Length Estimations

5.1. Artificial Neural Network

We show that using neural networks we can estimate :

Ti such that Pr(L(θ) ≥ Ti|s, n,Φobs) = 10−i i=1, 2, 3, 4 (13)

for any number of sources n and threshold s, and with only a short observation of the
traffic Φobs = (B(t), B(t − τ), ..., B(t − dτ)) where τ is a delay and d is the size of input
vector Φobs ( d is link to the reconstruction dimension [6]).

We need just the actual number of already connected sources n, the rate required by the
new user dmax (s = Bmax − dmax) and a traffic vector Φobs to estimate T1(s, n), T2(s, n),
T3(s, n), T4(s, n) and η(s, n).

The architecture chosen after several tests is a combination of five neural networks,
NN1 to NN5, (Multilayer Layer Perceptron with a standard sigmoidal function) with one
hidden layer. We trained the neural networks to estimate the following five functions :

η̂ = f1(Φobs, n, s, )

T̂1 = f2(Φobs, n, s, η̂)

T̂2 = f3(Φobs, n, s, η̂, T̂1)

T̂3 = f4(Φobs, n, s, η̂, T̂1, T̂2)

T̂4 = f5(Φobs, n, s, η̂, T̂1, T̂2, T̂3)

Using cross validation we have determined the best number of hidden units to be 18
and d = 80 but the precise values are not crucial (if large enough). The analysis of the
traffic correlation led us to choose τ = 1. The number of neurons for each neural network
is then 82, 83, 84, 85, 86 respectively for η, T1, T2, T3, T4 for the input layer, 18 for
the hidden layer and 1 for the output layer. Each neural network was trained with the
usual algorithm of backpropagation [7] to minimize the mean squared error. Training
was stopped at the minimum of the validation error, so as to get a good generalization
capacity.
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5.2. Gaussian estimation

We review below the estimation of the excursion length in the case of a process inde-
pendently and randomly sampled from a gaussian distribution. This estimation will be
used below for comparison purposes. This traffic has a mean and a standard deviation
estimated by :

B̄ =
1

N

N
∑

t=1

B(t) (14)

σB =

√

√

√

√

1

N

N
∑

t=1

(

B(t) − B̄
)2

(15)

with N the size of the observation (Φobs)
The parameters η and Ti are estimated by :

η = Pr (B(t) ≥ s) = Q(s) = 1 −
∫

+∞

s

1
√

2πσ2
B

e

(

−
1
2

(

B(t)−B̄

σB

)2
)

(16)

Pr (L(θ) ≥ T ∗) = Q(s)T ∗

(17)

⇒ Ti =
−i

log10 (Q(s))
(18)

6. Discussion

In this section we present our results, compare them to the gaussian estimation and
show how to use the estimation. To qualify the results on the different subsets we can
consider, as usual, the mean error and the mean error modulus of the errors obtained (R
is the size of the considered data set) :

Mean error =
1

R

R
∑

r=1

(

T̂ r
i (s, n) − T r

i (s, n)
)

(19)

Mean error modulus =
1

R

R
∑

r=1

(

| |T̂ r
i (s, n) − T r

i (s, n) | |
)

(20)

Tables 1,2 presents the results obtained, for the mean error and the mean error modulus
for different sizes of the observation window, Φobs, of the traffic. As we see , for Φobs=80,
the estimations realised by the neural networks are better than with the gaussian estima-
tor.

The scores obtained by the neural networks being approximately the same on the train-
ing, validation and test sets, we can conclude that the training process was efficient with
a good generalization capacity.

From these tables it is clear that neural networks slightly overestimate the excursion
lengths while the gaussian estimator is much more inaccurate and underestimates the
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Table 1
The Mean errors for each Ti ∈ [0 − 200] and η ∈ [0 − 1]

Mean error on :
Subset T1 T2 T3 T4 η

Artificial Neural Network Estimation Φobs=80
Trai. set 0.66 1.15 1.11 1.11 0.0024
Vali. set 0.51 1.10 0.83 0.98 0.0036
Test. set 0.48 1.19 0.82 0.86 0.0035

Gaussian Estimation Φobs=80
Trai. set -5.11 -6.55 -7.50 -8.28 -0.0205
Vali. set -5.41 -6.96 -8.12 -8.92 -0.0207
Test. set -5.43 -7.04 -8.09 -8.96 -0.0206

Gaussian Estimation Φobs=180
Trai. set -3.85 -5.10 -6.31 -7.19 -0.0204
Vali. set -4.13 -5.64 -6.91 -7.91 -0.0206
Test. set -4.06 -5.64 -6.97 -7.86 -0.0207

excursion lengths. Therefore, the neural networks can allow a tight and conservative
CAC.

The errors of the gaussian estimation can be decreased by increasing the size the obser-
vation window to get a better evaluation of mean and variance of the traffic. However the
larger the observation window, the longer the time to react to traffic variations. Being
accurate even with a small observation window, the neural network estimations allow to
adapt rapidly to traffic variations.

Such results show that neural network estimators can be used for a tight, conservative
and rapidly adaptative MBCAC.

To qualify the error in term of bandwidth required and to make sure that the variance
of the error does not degrade the result (see figure 5 ), let us define the probability of an
error of magnitude k (in percent of the maximum bandwidth available) as:

Pr(E(k)) =
1

R

R
∑

r=1

e(k) (21)

with

e(k) = 0 if (T r
i (s − k, n) ≥ T̂ r

i (s, n) ≥ T r
i (s + k, n) (22)

else e(k) = 1 (23)

Because both of the error and its variance are small, the probability Pr(E(2)) is always
lower than 0.05; therefore we have a probability of 0.95 that the accuracy is of the order
of 2 percent of the bandwidth.

We illustrate below the use of such estimations for CAC. Two connections request to be
accepted on a node with 25 connections already connected. Both connections have a PCR
of 29.4 and their QoS is defined in term of maximum excursion lengths with probabilities
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Table 2
The Mean errors modulus for each Ti ∈ [0 − 200] and η ∈ [0 − 1]

Mean error modulus on :
Subset T1 T2 T3 T4 η

Artificial Neural Network Estimation Φobs=80
Trai. set 4.73 6.04 6.67 6.61 0.0134
Vali. set 4.73 6.15 6.88 6.80 0.0138
Test. set 4.50 5.89 6.67 6.45 0.0133

Gaussian Estimation Φobs=80
Trai. set 7.95 8.95 9.45 9.93 0.0255
Vali. set 8.03 9.21 9.95 10.53 0.0265
Test. set 8.29 9.32 9.93 10.51 0.0267

Gaussian Estimation Φobs=180
Trai. set 7.11 8.09 8.84 9.46 0.0233
Vali. set 7.29 8.49 9.38 10.07 0.0243
Test. set 7.47 8.54 9.39 10.12 0.0245

10−1, 10−2, 10−3, 10−4. The post connection excursion lengths are therefore estimated
from the current traffic at the threshold s=70.6 for n=25. The results are shown on the
figure 6.

T
i
(s,n)

(s-k,n)

Ti (s,n)
^

s+ks-k s

Ti

Ti (s,n)

Ti (s+k,n)

Figure 5. An explanation for e(k).
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Figure 6. The acceptance zone

Guaranteeing that the Quality of Service for the already connected sources is respected,
the second source will be accepted but the first one will be rejected, because the blocking
probabilities are too high with regards to its quality of service.
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7. Conclusion

In this contribution we have shown a new method for Connection Admission Control
in the ABT/ATM network which is based on an estimation of the blocking probabilities
in an ATM node using the generalization ability of neural networks. This non parametric
method allows us to correctly decide the acceptance of a new connection in regard of
its traffic parameters. The estimations with neural networks are accurate, need a small
observation of the traffic and can therefore react quickly to traffic changes. In a future
work we will study the influence of the buffer size, of traffic heterogeneity.
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