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Abstract. This paper presents a new statistical approach for learning
automatic color image correction. The goal is to parameterize color inde-
pendently of illumination and to correct color for changes of illumination.
This is useful in many image processing applications, such as color im-
age segmentation or background subtraction. The motivation for using
a learning approach is to deal with changes of lighting typical of indoor
environments such as home and office. The method is based on learn-
ing color invariants using a modified multi-layer perceptron (MLP). The
MLP is odd-layered and the central bottleneck layer includes two neurons
that estimates the color invariants and one input neuron proportional to
the luminance desired in output of the MLP(luminance being strongly
correlated with illumination). The advantage of the modified MLP over
a classical MLP is better performance and the estimation of invariants to
illumination. Results compare the approach with other color correction
approaches from the literature.

1 Introduction

The apparent color of objects in images depends on the color of the light
source(s) illuminating the scene. That is why changes in illumination cause ap-
parent color changes in images. Because of this color constancy problem, image
processing algorithms using color, such as color image segmentation or object
recognition algorithms, tend to lack robustness to illumination changes. Such
changes occur frequently in images due to shadows, switching lights on or off,
and the variation of sunlight during the day. To deal with this, a color correction
scheme that can compensate for illumination changes is needed.

Section 2 presents the state of the art for color correction. Section 3 details
our approach, based on learning color correction using a modified MLP. The
motivation for this is discussed, and the learning method is described. The ap-
proach is compared to using a classical MLP for learning color correction. Section
4 shows experimental results and comparisons.

2 Illumination correction - state of the art

Color in images is usually represented by a triband signal, for instance Red-
Green-Blue (RGB). As discussed in the introduction, this signal is sensitive to



changes in illumination. However, image processing techniques need to be ro-
bust to such changes. Therefore color needs to be parameterized independently
of illumination. This can be done by parameterizing color with one or two pa-
rameters or by correcting the triband signal. A number of color parametrization
and color correction schemes have been described in the literature.

An example of mono-band parametrization of color is hue (from hue-saturation-
value, a.k.a. HSV) [GW01]. Examples of bi-band color parameterization are
chrominances uv (from the YUV color space) [GW01] and the ab values from the
CIE Lab color space [GW01]. These three color representations (H, uv or ab) are
analytical and thus do not require learning. They are fast pixel-wise methods.
They have a limited robustness to illumination changes.

An approach for estimating color invariants from images consists in calculat-
ing ratios of RGB components at a given pixel (R/B) or between neighboring
pixels (such as (Rx1

Gx2
)/(Gx1

Rx2
)) [GS99]. This method is also pixel-wise and

thus fast. These invariants are also very robust to illumination changes. However,
a lot of information about the original color signal is lost, and reconstructing
the original signal from these invariants is difficult.

A more sophisticated method has been proposed by [FDL04]. It estimates a
mono-band invariant and is based on a physical model of image formation. It
works globally on the image. In (log(R/B), log(G/B)) color space, an axis invari-
ant to illuminant color is determined by entropy minimisation. The projection of
colors onto a line perpendicular to the invariant axis gives corrected colors. The
approach does not require learning and applies to any type of illuminant, but is
relatively slow. It also requires that the image contains relatively few different
colors and also includes many changes of illumination for each color.

Yet another approach explicitly estimates the color of the illuminant [FCB97].
A neural network estimated the chromaticity of the illuminant from the his-
togram of chromaticity of the image. The method works globally from the whole
image and supposes there is only one illuminant for the entire image.

3 A statistical approach to measure color invariants

3.1 A modified multi-layer perceptron: motivation

The motivation of this work is twofold: (1) to parameterize color compactly
and independently of illumination by two invariants (2) to do it in real-time.
Firstly, two parameters are needed to parameterize color with enough degrees
of freedom to reconstruct a triband signal, given a luminance (or a gray level
signal). Secondly, real-time processing (or more exactly video rate processing, e.g.
processing 25 or 30 images per second) is also necessary for some applications.
This means that methods such as [FCB97] and [FDL04] are out, since they
work on the whole image. To obtain real time performance, pixel-wise processing
is necessary. Hue-Saturation and uv (from YUV) and ab (from the CIE Lab
color space) are three 2-parameter pixel-wise representations of color from the
literature that can be calculated in real-time. However they lack robustness



Fig. 1. A classical MLP with 4 inputs can be used to perform color correc-
tion. (Ri, Gi, Bi) is the input color. (Rd, Gd, Bd) is the desired output color,
corresponding to the same color seen under a different illumination. L is
the luminance of the expected output and is a direct function of the illu-
mination. This fourth input neuron prevents the mapping to be learnt by
the MLP from including one-to-many correspondences and thus makes it
solvable. If the MLP contains a bottleneck layer with 3 neurons, then these
perform a re-parameterization of RGB space. However the three color pa-
rameters estimated by the 3 neurons have no reason to be invariant to
illumination.

to illuminations changes. Mathematical and/or physical models could be used
to find a more robust parameterization [GS99]. They are very general, but lose
information so that the original color signal is difficult to reconstruct from them.
However, in practice, a limited range of illumination sources, and thus a limited
range of illumination changes, are available in indoor environments. It is therefore
interesting to use learning methods to find a color parameterization invariant to
the ”usual” illumination changes. While more restricted in their application, such
parameters should also be more robust. Another interest of learning about typical
illuminants in indoor environments is that it provides global a priori information
about the illuminants, so the approach is not completely local (considering the
fact that Land’s Mondrian experiments showed that illuminant correction cannot
be performed purely locally [LM71]). In practice, the lighting customarily found
in home and offices comes from fluorescent lights, incandescent light bulbs and
natural sunlight from windows. They tend towards the whitish and yellowish
areas of the spectrum (very few bluish or reddish lights). These are the sort of
illuminants that our approach will deal with.

Our learning method of choice has been neural networks and more specifi-
cally multi-layer perceptrons (or MLPs), for their ease of use and adaptability.
The first architecture that comes to mind to estimate a re-parametrization of
color robust to illumination changes is a odd-layered MLP with three input neu-
rons, three output neurons, and three neurons in its bottleneck layer (plus a bias
neuron of course). The 3 neurons of the bottleneck layer would reparameterize
color. Or, if color reparameterization was not desired, and only color correction
was aimed for, a generic MLP with 3 input neurons and 3 output neurons could
be used, and the number of layers and neurons per hidden layer could be op-
timised. The measured (R,G,B) values corresponding to the same color viewed



under two different illuminations can be given as input and ouput of the MLP to
train it. However, several illumination changes are possible, and this means that
the same entry could correspond to several different outputs. This is impossible
for a MLP. Therefore a classical MLP with 4 inputs needs to be used. To re-
flect the fact that the same input color can correspond to different output colors
depending on illumination, a fourth input, the luminance desired in output, is
added to the MLP. The architecture of such a MLP is shown in fig. 1 with a
bottleneck layer to reparameterize color with 3 parameters. However, in such
an architecture, the influence of color and illumination would be mixed in the 3
parameters. The coding of color independently of illumination is not garanteed.

To force the MLP to code color independently of illumination, the archi-
tecture of the traditional MLP is modified and a new architecture is proposed
to force the network to separate color and luminance. The modified architec-
ture is illustrated by fig. 2. The new MLP includes a compression layer with
two neurons (λ, µ). During training, it learns from the inputs (Ri, Gi, Bi) and
the desired outputs (Rd, Gd, Bd) to compress color into two parameters (λ, µ).
However this is not a trivial compression network. The difference is that there
is a fourth input, a context input, which is directly dependent on illumination,
and which has its input point in the middle layer of the network (where (λ, µ)
are calculated). This context input does not depend on the input (Ri, Gi, Bi)
or the actual output (R̂d, Ĝd, B̂d) of the network, but on the desired luminance
Ld = Rd+Gd+Bd

3
of the output of the network. With such an input, the network

learns to reconstruct the desired output color using directly Ld as an input. Thus
it learns to ignore the luminance of the input (Ri, Gi, Bi) and learns to estimate
two variables (λ, µ) that are invariant to illumination, and related only to color.

The approach does not require any camera calibration or knowledge about
the image.

3.2 Training the modified multi-layer perceptron

As shown in fig. 2, the modified MLP includes 5 layers (this could be generalized
to an odd number of layers). The input and output layers have 3 neurons each
(plus an additional bias), for RGB inputs and outputs. The middle layer includes
3 neurons (two real and one virtual, excluding bias): their outputs are called λ, µ
and L. The second and fourth layers have arbitrary numbers of neurons (typically
between 3 and 10 in our experiments). The links between neurons are associated
to weights. Neurons have sigmoid activation functions. The network includes
biases and moments [Bis96].

A database of images showing the same objects under different illuminations
is used to train the modified MLP. The illuminations are typical of indoor en-
vironments such as home and office: fluorescent lights, incandescent light bulbs
and natural sunlight coming from windows.

A classic MLP training scheme based on backpropagation is applied, with
two additional changes due to the structure of the modified MLP. As commonly
done with MLPs, a pixel is randomly sampled at each iteration from the training
set. Its RGB values before and after an illumination change (from real images)



Fig. 2. A modified MLP for color correction and color invariant learning.
(Ri, Gi, Bi) is the input color. (Rd, Gd, Bd) is the desired output color, corresponding
to the same color seen under a different illumination. Ld = Rd+Gd+Bd

3
is the luminance

of the desired output and is a direct function of the illumination. λ and µ are the color
parameters invariant to illumination that the MLP is trained to estimate. (R̂d, Ĝd, B̂d)
are the actual outputs of the network. Bias neurons are omitted from this figure.

are used as input (Ri, Gi, Bi) and desired output (Rd, Gd, Bd) to the network.
Propagation and back-propagation are then performed, with two modifications
(as mentioned above). First, during propagation, the output L of the third neu-
ron of the third layer is forced to the value of the luminance corresponding to
the desired output color, e.g. Ld = (Rd + Gd + Bd)/3 . The idea is that the
network is trained to do the best possible reconstruction of the RGB output
(Rd, Gd, Bd) from the intermediate variables λ, µ and the imposed luminance
Ld. Since Ld is a direct function of the illumination, the estimated λ and µ
should be related to characteristics of color that are invariant to illumination.
The second modification to training the MLP (compared to classic propagation
and back-propagation) is that, during back-propagation, the error on the output
L of the third neuron is not back propagated.

3.3 Use of the modified multi-layer perceptron

The trained modified MLP can be used to correct color images. Each image pixel
is propagated through the trained network to find the invariants λ and µ. An
arbitrary luminance L is imposed on the pixel by forcing the output of the third
neuron of the third layer to L. The output of the trained network then gives the
corrected color. If a constant luminance L is used for all pixels in the image, an
image corrected for shadows and for variations of illumination across the image
and between images is obtained. The color correction can be tabulated for fast
implementation.

The approach could be easily extended to a greater number of inputs and
outputs than 3 or different inputs/outputs than RGB. For instance, YUV or
HSV, or redundant characteristics such as RGBYUVLab could be used as inputs
and outputs.



4 Image correction results

4.1 Experimental conditions and database

Fig. 3. Examples of images before and after an illumination change from the training
database. This database includes examples of illumination changes typical of office and
home environments.

The network was trained using 546000 pixels. These were randomly sampled
from 91 training images (6000 pixels per image), taken by 2 webcams (Philips
ToUCam Pro Camera and Logitech QuickCam Zoom). The training images are
of different indoor scenes (and partial views of the outdoors through windows)
under varying illuminations, from home and office environments. An example is
shown in fig. 3. The variations of illuminations are caused by indoor lighting such
as typically found in homes and offices (fluorescent lights and incandescent light
bulbs) and natural sunlight (coming from windows). Testing was performed on
other images taken by the 2 webcams used for training and by a third webcam,
not used for training, a Logitech QuickCam for Notebooks Pro.

In practice, using 8 neurons in the second and fourth layers of the MLP gives
good performance. A gain of 1.0 was used, with a momentum factor of 0.01 and
a learning rate of 0.001. Pixels that were too dark (luminance ≤ 20) or too bright
/ saturated (luminance ≥ 250) were not used for training.

4.2 Comparison with a ”classical” multi-layer perceptron

for a classical MLP for the modified MLP

mean error (in pixel values, 10.47 5.54
the pixel values going from 0 to 255)

relative mean error 4.11% 2.17 %

Table 1. Mean error between reconstructed and target images for a ”classical” MLP
and the modified MLP presented in this article. The mean error was calculated using
748 320x240 test images (not in the training set). The error is averaged over the three
color components (R,G,B).

Table 1 shows that the modified MLP (fig. 2) performs better in reconstruct-
ing target images than a classic MLP (fig. 1). The reconstruction is done given
the expected luminances Ld of the pixels of the desired target image.



Fig. 4. Example of color correction learnt by the modified MLP. (1) is the
original image (unknown illumination). (2) and (3) show the 2 invariants λ and µ

estimated by the MLP from the image. (4) is the locus of the invariants in the uv
chrominance space of image pixel values. (5) is the corrected image reconstructed by
the modified MLP with the pixel luminance inputs set to values proportional to the
pixel luminances in the original image (plus a constant). (6) is the corrected image
reconstructed by the modified MLP with the pixel luminance inputs set to a constant
value for all pixels. (7) shows the 7 color peaks found by mean shift [CRM00] in the
corrected image shown in (6). (8) shows the resulting image segmentation.

4.3 Invariant estimation by the modified MLP

Figure 4 shows the two invariants (λ, µ) learnt by the modified MLP and cal-
culated on an image (see part (1) of fig 4) of unknown illumination. The two
invariants are seen in parts (2) and (3) of the figure. It can be seen that objects
of similar color to the human eye have similar values of λ and µ. In addition,
part (4) of fig. 4 shows the locus of the invariant values (λ, µ) in the image as
a fonction of the chrominance values (u, v) (from YUV color space) of the im-
age pixels. This plot demonstrates that the locii of the two invariants are not
identical, and thus we have two invariants and not only one.

Part (6) of the figure shows the corrected image estimated by the modified
MLP from the two invariants (λ, µ) and a constant luminance input over the
image. Much of the influence of shading and variations of illumination across
the image is removed, apart from specularities (white saturated areas) which
are mapped to gray by the network. Indeed areas of similar color to the human
eye in the original image (despite shading and illumination) have much more
homogeneous color in the corrected image. This can be further seen by perform-
ing mean-shift based color segmentation [CRM00] on the corrected image. Seven
areas of uniform color are readily identified and segmented (see part (7) and (8)
of fig. 4) from the corrected image. They correspond roughly to what is expected
by a human observer. This example illustrates that our modified MLP success-
fully learns a parameterization of color by two parameters that are invariant to
illumination.



Fig. 5. Comparison of the pixel-wise color correction by the modified MLP
presented in this paper and the whole-image color correction method of
Finlayson et al [FDL04]. Application to shadow detection. Example I. (a)
and (d) original image. (b) invariant image obtained using the method of
[FDL04]. (c) shadow edges estimated from (b). (e) corrected image esti-
mated using the modified MLP. (f) and (g) results of mean shift color
segmentation [CRM00] from (e). (g) shadow edges estimated from (f).

4.4 Performance of a LUT implementation of the trained modified

MLP

Color correction by the modified MLP can be tabulated, making it one the fastest
possible color correction approaches. Execution time for image correction, based
on a Look-Up Table implementation of the modified MLP, is 3.75 ms for an
entire 320x240 image, on a Pentium4 3GHz. Such a fast LUT implementation is
possible because the approach is pixel-wise.

An HSV correction scheme could be as fast (since it could also be imple-
mented using LUTs), but it would be less performant, as illustrated on a example
by fig. 6. A color correction scheme based on [FDL04] would be of equal perfor-
mance, as illustrated on examples by fig. 5. It could deal with more changes of
illumination, since our approach is limited to the type of frequently found indoor
lighting the modified MLP was trained for. However, working globally on the
image, it could not be implemented as a LUT, and would thus be significantly
slower.

4.5 Comparison with other color correction methods from the

literature

Figures 6 and 5 compare our color correction approach with an HSV-based
correction (HSV being hue-saturation-value) and the color correction scheme
of [FDL04] on several examples and for different applications.

Figure 6 compares our approach to HSV-based color correction and applies
it to color-based background subtraction. The two first images of the first and
second columns of the figure show that the color correction scheme presented in
this paper is indeed robust to changes in illumination, since there is much less
difference between the images after correction than before. Figure 6 also shows



Fig. 6. Comparison of the pixel-wise color correction by the modified MLP
presented in this paper and pixel-wise HSV-based color correction, HSV
being the well known hue-saturation-value color space.

that the correction performed in this paper compares favorably with an HSV-
based color correction (which consists in taking an RGB color to hue-saturation-
value space, setting its value/luminance to a constant, then going back to RGB
space to get the corrected color).

Figure 5 illustrates that our correction is of similar quality to that of Fin-
layson et al [FDL04] (briefly described in the introduction of this paper). The
application of color correction is the detection of shadow contours (which can be
used for shadow removal, as shown in [FDL04]). Even though it might be less



robust to large light changes or unusual light changes (such as turning on a blue
or red light), our method is faster, being pixel-wise.

5 Conclusion

This paper presents a new neural network-based approach to estimating image
color independently of illumination. A modified multi-layer perceptron is trained
to estimate two color invariants and an illumination- corrected color for each in-
put color. It is trained for typical indoor home and office lighting (fluorescents
and light bulbs) and outdoor natural light, using two webcams. Experiments
with light changes and another webcam show that the training seems to have
good generalization properties. The approach could be generalized to other appli-
cations where one or several invariants of a signal (here color) to a perturbation
(here illumination) need to be found. If a database of signals before and af-
ter perturbation, and measurements directly correlated to the perturbation are
available, then a modified MLP architecture of the type presented here can be
used to learn the invariants.
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